
EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL

 Page:1

 Status: Final Version 3.0

Specification

EBICS

(Electronic Banking Internet

Communication Standard)

Version 3.0

Final Version, March 29th 2017

This specification is valid from November 27th 2018.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 2

 Status: Final Version 3.0

Amendment history
The following table provides an overview of the significant amendments that were made from

version 2.5 to version 3.0.

Chapter Type Description

Complete
document

A As the distributed electronic signature will be used EBICS-wide in the
future the abbreviation VEU (basing in the German term “Verteilte
Elektronsiche Unterschrift”) is renamed into EDS (Electronic
Distributed Signature).
In existing HAC-Codes the 3-letteracronym VEU remains.

New Annex
“Transport
Layer
Security”

A Used TLS version (V 1.2) and recommended cipher suites are
migrated to a new EBICS Annex. Therefor chapter 11.3.1 in the
specification can be deleted.

3 and 16 A Only the public key format X.509 is usable (deletion of proprietary
descriptions).

3.13 and 3.14 E Discriptions of the interpretation of BTF and flag combinations by the bank
server

4.6.2 A In case key updates the EBICS user should not be longer obligated

for a “manual” revision of the bank keys

Several,
especially 4.7,
11, 14

A Increase of minimum key length for all signature keys

Several,
especially 4.8
(deletion)

D Elimination of all references and descriptions regarding FTAM

migration

5.5.2, 5.6.2,
8-10 and
further
passages

A / Ext / D Integration of the BTF concept (instead of business related order
types or file format parameters). This is the major change between
V 2.x versions and the new version V 3.0 at hand.
FUL and FDL structures are deleted, the remaining order type
identifiers are all used for reasons of administration or for technical
questions. If these order types are used they will be called
“administrative order types” for differentiation. All business-related
information (business transaction formats = BTF) is expressed by the
BTF service structure.

In the context of BTF the order attributes were removed.

The element <OrderAttribute> and all rules are deleted (schema-
relevant!). The meaning is replaced by <SignatureFlag> (for DZHNN
an OZHNN). The meaning of UZHNN (only transmission of an ES) is
the implicit and exclusive meaning of the administrative order types
HVE, HVS and SPR. This especially means that (missing) ES can
only be added to existing orders afterwards via VEU (now EDS)!

5.5.1.1.2,
8.3.1, 10

Ext Additional order information (sent by the customer to the bank)

 E = Error; A = Amendment; C = Clarification; Ext = Extension; D = Deletion

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 3

 Status: Final Version 3.0

Chapter Type Description

5.5.1.2,
section I.e.c.

C Clarification regarding the verification of order attributes and order
numbers

9.3.2.1.3 C Further examples fur the element HostID for illustration

10.2.1, 10.3,
10.4

Ext Clarifications regarding HAC:
-Timestamp

- ISO code list
- End label in HAC

Several,
especially
11.2,
11.5.1.1, 14,
14.2
(deletion)

D Elimination of all references and descriptions regarding the ES of

version A004

11.3.1.1 E / A Updates and corrections in the supported versions for TLS encryption
(TLS-handshake)

13 A Updates in the list of administrative order types

Examples 56,
59, 60 and 70

E Correction of examples regarding the default of the attribute
LastSegment in element SegmentNumber: (Correct is:
LastSegment="false")

16 A Update of the Glossary.

Please especially note the added term “certificate”

Annex 1 Ext / A / D Several changes in the return code list
(details see amendment history of annex 1)

EBICS_BTF-
ExternalCode
List

Ext New annex for the EBICS specification.
It replaces Annex 2 from EBICS V 3.0.

Common
Implemenatio
n Guide

A / E / Ext Several changes (details see amendment history of IG)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 4

 Status: Final Version 3.0

Chapter Type Description

Schema files
within H005

Ext / A 1. Target namespace for H005 urn-address: urn:org:ebics:H005

2. New xsd-names for all schema files within H005 (e.g.
ebics_request_H005)

3. Definition of an optional element “AdditionalOrderInfo” for
additional Information about the order (unstructured, up to 255
characters)

a. New simple: Type String255

b. Extensions of EBICS Request (Extension of
DataTransferRequestType) and HVU/HVZ

4. Mandatory DataDigest element to transfer the data digest with
each EBICS Request (Extension of DataTransferRequestType)

5. Integration of “IBAN only” in the administrative VEU (now EDS)
order types HVZ and HVT: The bank code must be optional in
these structures

6. Deletion of all structures which deal with FTAM (administrative
order type HSA)

7. Deletion of the element group “OrderSignature” which was only
usable for A004. In this context global change of the attribute
SignatureVersion” (now mandatory instead of optional with
previous default “A004”).
New namespace/version for S001  S002 (because of the
deletion of the element group OrderSignature)

8. Due to the EBICS wide use of pub key format X.509 amendment
of the respective element groups

9. Extensions and amendments due to BTF concept

10. Content of generic order params moved to BTU/BTDOrderParams

11. Deletion of the optional structure x509Data in HPD response

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 5

 Status: Final Version 3.0

Contents

1 Overview and objectives of EBICS .. 10

1.1 Objective of the cooperation .. 10

1.2 General objectives of EBICS ... 10

2 Definitions ... 12

2.1 Terms ... 12

2.2 Notation .. 12

2.2.1 XML .. 12

2.2.2 Flow diagrams.. 14

2.2.3 Other notation .. 15

2.3 Data types .. 15

3 Design decisions.. 17

3.1 OSI model from EBICS perspective .. 17

3.1.1 TCP/IP as package-orientated transmission layer 17

3.1.2 TLS as transport encryption .. 18

3.1.3 HTTP(S) as a technical basic protocol .. 20

3.1.4 XML as an application protocol language ... 20

3.2 Compression, encryption and coding of the order data .. 25

3.3 Segmentation of the order data ... 26

3.4 Recovering the transmission of order data (recovery) [optional] 26

3.5 Electronic signature (ES) of the order data ... 27

3.5.1 Subscriber’s ES ... 27

3.5.2 Financial institution’s ES [planned].. 28

3.5.3 Representation of the ES’s in EBICS messages 29

3.6 Preliminary verification [optional] ... 30

3.7 Technical subscribers .. 30

3.8 Identification and authentication signature .. 31

3.9 X.509 data .. 33

3.10 Supported administrative order types .. 34

3.11 Order parameters ... 34

3.12 Flow of the EBICS transactions ... 36

3.13 Interpretation of BTF element combinations by the bank server 39

3.14 Interpretation of ES /EDS flag combinations by the bank server 40

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 6

 Status: Final Version 3.0

4 Key management ... 41

4.1 Overview of the keys used... 41

4.2 Representation of the public keys ... 42

4.3 Actions within key management .. 44

4.4 Initialisation .. 44

4.4.1 Subscriber initialisation .. 47

4.4.2 Download of the financial institution’s public keys 65

4.5 Suspending a subscriber ... 72

4.5.1 Alternatives .. 72

4.5.2 Revoking a subscriber via SPR ... 73

4.6 Key changes .. 73

4.6.1 Changing the subscriber keys ... 73

4.6.2 Changing the bank keys .. 80

4.7 Change-over to longer key lengths ... 82

4.8 Summary .. 82

5 EBICS transactions .. 84

5.1 General provisions ... 84

5.1.1 EBICS transactions .. 84

5.1.2 Transaction phases and transaction steps ... 84

5.1.3 Processing of orders .. 84

5.1.4 Transaction administration .. 85

5.2 Assignment of EBICS request to EBICS transaction .. 86

5.3 Preliminary verification of orders [optional] ... 87

5.4 Recovery of transactions [optional] ... 89

5.5 Upload transactions ... 90

5.5.1 Sequence of upload transactions .. 90

5.5.2 Recovery of upload transactions ... 118

5.6 Download transactions .. 122

5.6.1 Sequence of download transactions ... 122

5.6.2 Recovery of download transactions .. 143

6 Encryption... 148

6.1 Encryption at TLS level .. 148

6.2 Encryption at application level ... 148

7 Segmentation of the order data ... 150

7.1 Process description.. 150

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 7

 Status: Final Version 3.0

7.2 Implementation in the EBICS messages ... 150

8 Electronic Distributed Signature (EDS) ... 152

8.1 Process description.. 152

8.2 Technical implementation of the EDS ... 154

8.3 Detailed description of the administrative EDS order types 156

8.3.1 HVU (download EDS overview) and HVZ (Download EDS
overview with additional information) .. 156

8.3.2 HVD (retrieve EDS state) .. 180

8.3.3 HVT (retrieve EDS transaction details) ... 187

8.3.4 HVE (add electronic signature) ... 205

8.3.5 HVS (Cancellation of orders in the EDS) .. 208

8.3.6 Used Service Structures (restricted and not restricted) 211

9 “Other” administrative EBICS order types ... 214

9.1 HAA (download retrievable business transaction formats BTF) 214

9.1.1 HAA request ... 214

9.1.2 HAA response .. 214

9.2 HPD (download bank parameters) .. 215

9.2.1 HPD request .. 216

9.2.2 HPD response.. 216

9.3 HKD (retrieve customer’s customer and subscriber information) 224

9.3.1 HKD request .. 224

9.3.2 HKD response.. 224

9.4 HTD (retrieve subscriber’s customer and subscriber information) 241

9.4.1 HTD request ... 241

9.4.2 HTD response .. 241

9.5 HEV (Download of supported EBICS versions) .. 244

9.5.1 HEV request ... 245

9.5.2 HEV response .. 245

9.5.3 Schema for HEV request / HEV response .. 245

10 EBICS Customer acknowledgement (HAC) .. 248

10.1 Preliminary Notes ... 248

10.2 Allocation of pain.002 for HAC .. 248

10.2.1 Allocation of the element group Group Header 248

10.2.2 Allocation of the element group Original Group Information and
Status ... 250

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 8

 Status: Final Version 3.0

10.2.3 Allocation of the element group Original Payment Information and
Status ... 250

10.3 Annex for HAC: External reason codes (result of action) 257

10.4 Annex for HAC: Type/result of action (permitted pairs) .. 259

11 Appendix: Cryptographic processes .. 262

11.1 Identification and authentication signature .. 262

11.1.1 Process .. 262

11.1.2 Format .. 262

11.2 Electronic signatures ... 263

11.2.1 Process .. 263

11.2.2 Format .. 263

11.2.3 EBICS authorisation schemata for signature classes 263

11.3 Encryption .. 264

11.3.1 Encryption at TLS level .. 264

11.3.2 Encryption at application level ... 265

11.4 Replay avoidance via Nonce and Timestamp ... 267

11.4.1 Process description ... 267

11.4.2 Actions of the customer system .. 268

11.4.3 Actions of the bank system .. 269

11.5 Initialisation letters ... 271

11.5.1 Initialisation letter for INI (example with version A006 of the ES) 271

11.5.2 Initialisation letter for HIA (example) ... 272

11.6 Generation of the transaction IDs .. 273

12 Overview of selected EBICS details .. 274

12.1 Optional EBICS features .. 274

12.1.1 Optional administrative order types ... 274

12.1.2 Optional functionalities in the course of the transaction 274

12.2 EBICS bank parameters .. 274

12.3 Security media of bank-technical keys .. 275

12.4 Patterns for subscriber IDs, customer IDs, order IDs, hostIDs 275

13 Appendix: Complete List of Administrative Order Type Identifiers 277

14 Appendix: Signature process for the electronic signature .. 279

14.1 Version A005/A006 of the electronic signature ... 280

14.1.1 Preliminary remarks and introduction .. 280

14.1.2 RSA .. 281

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 9

 Status: Final Version 3.0

14.1.3 Standard digital signature algorithm .. 282

14.1.4 Signature Mechanisms A005 and A006 .. 284

14.1.5 References ... 291

14.1.6 XML structure of signature versions A005/A006..................................... 292

15 Appendix: Standards and references .. 293

16 Appendix: Glossary ... 295

17 Table of diagrams .. 299

The XML schema (H005, H000 and S002) can be found on the Internet:

http://www.ebics.org.(see “Specification”)

http://www.ebics.org/

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 10

 Status: Final Version 3.0

1 Overview and objectives of EBICS

1.1 Objective of the cooperation

The German banking sector represented by Die Deutsche Kreditwirtschaft (DK) and

the French banking sector represented by Comité Français d'Organisation et de

Normalisation Bancaires (CFONB) founded a company (EBICS SCRL) on the joint

use of EBICS. The Swiss banking industry, represented by SIX Interbank Clearing

joint the EBICS SCRL in 2015.

EBICS was originally developed by the German banking industry and enables

corporate clients to conduct their banking business flexibly, securely and efficiently

and to select the most suitable services provider for their individual needs. EBICS

also has “multi-bank capability”, meaning that in general corporate clients can reach

any bank supporting the standard using the same software.

Principally, this specification is valid in general unless an instruction is specified for

a particular country relating to a special application of the specification.

Any optional functionality can be supported in one country (and rendered

mandatory) and, at the same time, not supported in another country.

The specific use of optional functionalities is described in detail in a common

Implementation Guide (chapter 3 of this guide).

1.2 General objectives of EBICS

This EBICS (“Electronic Banking Internet Communication Standard”) detailed

specification describes the functionality of multi-bank capable, secure

communication via the Internet.

EBICS does not present any special requirements of the concrete architecture of the

customer’s systems; stand-alone desktop applications can be connected just as

easily as e.g. client/server applications or applet solutions.

At the application level, the process “Remote data transmission with customer” is

augmented by the concept of Electronic Distributed Signature (EDS), which allows

chronologically and spatially-independent authorisation of orders from all customers.

The fundamental features of the EBICS standard are:

 Transmission of professional data (commercial transactions) using established bank-

specific formats

 Possibility of the “Electronic Distributed Signature (EDS)”

 Specification of the EBICS-specific protocol elements in XML

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 11

 Status: Final Version 3.0

 Transmission of messages via http (“Internet-based”); utilisation of TLS for basic

transportation security between the customer’s and the bank’s systems, using TLS

server authentication

 Cryptographic safeguarding of each individual step of a transaction via encryption and

digital signatures at the application level.

The EBICS detailed specification is the basis for the development of customer and

bank systems that communicate using the EBICS protocol. As such, it contains

manufacturer-independent process descriptions and thereby guarantees interaction

between customer and bank systems from different manufacturers.

This detailed specification incorporates the EBICS protocol description and all

details relating to code management, EDS and the XML schemas for the order data

of the administrative (technical) EBICS order types. The complete XML schemas are

stored as separate HTML documents.

The detailed specification only limits the processing freedom of the customer and

bank systems with specifications and provisions where this is necessitated by

security considerations or processes beyond the scope of the EBICS

communication. In contrast to the EBICS Implementation Guide, implementation

alternatives will not be indicated in the detailed specification.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 12

 Status: Final Version 3.0

2 Definitions

2.1 Terms

The following terms in small capitals have a special meaning in the protocol

definition:

 MUST: denotes a compelling requirement; only those implementations that fulfil this

requirement are deemed to be EBICS-conformant.

 SHALL/SHOULD: denotes requirements that are to be followed under normal

circumstances; however, individual exceptions are possible for technical or

professional reasons.

 CAN/MAY: denotes unbinding recommendations or optional features.

Functionalities or features of the EBICS protocol are designated as optional if they

do not have to be supported by the financial institution. Customers do not have a

legal claim to the corresponding functionality from the financial institutions.

Functionality or features of the EBICS protocol in a particular version are designated

as planned if they are being prepared for subsequent versions but may not yet be

used in the present version.

This specification is targeted at software vendors and the obove mentioned terms

refer to the requirement of software implementions supporting EBICS functionality.

It’s no requirement on banks and the contracs between customer and bank.

2.2 Notation

2.2.1 XML

2.2.1.1 XML schema

The following symbology is used for graphical representation of XML schemas:

 Elements are placed in rectangles.

 Attributes are also placed in rectangles and are surrounded by an “attributes” box.

 Elements, attributes and other declarations that belong to a complex type are

surrounded by a dashed box that is highlighted in yellow.

 A “branch” (corresponds to choice in XML schema) is shown as an octagon

containing a switch symbol for three possible switch positions. The connecting lines

to the possible alternatives branch out on the right of the symbol.

 A “sequence” (corresponds to sequence in XML schema) is shown as an octagon

containing a line symbol with three points on it. The connecting lines to the individual

sequence elements branch out on the right of the symbol.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 13

 Status: Final Version 3.0

 Symbols with solid edges denote mandatory use, and in the XML schema correspond

to the attribute minOccurs="1" for elements or use="required" for attributes.

 Dashed symbols denote optional use, and in the XML schema correspond to the

attribute minOccurs="0" for elements or use="optional" for attributes.

 Crossed-out symbols denote planned usage, and in the XML schema correspond to

the attribute combination minOccurs="0" maxOccurs = “0” for elements or

use="prohibited" for attributes

 “m..n“ in the right lower corner of an element symbol restrict the use of the element to

m- to n-times occurrence, and in the XML schema correspond to minOccurs="m"

maxOccurs="n"; correspondingly, where “m..∞” minOccurs="m"

maxOccurs="unbounded"

 Element groups are represented by octagons, and correspond to the group

declaration in the XML schema

 Attribute groups are surrounded by boxes with the respective group names and

correspond to the attributeGroup declaration in the XML schema.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 14

 Status: Final Version 3.0

Diagram 1: XML schema symbols

2.2.1.2 XML documents

Individual code segments are shown in the Courier font.

If an element name or type does not fit completely onto a line, the symbol » is used

to direct the reader to the next line.

Complete examples of code are shown in Courier 8pt and are surrounded by a frame.

2.2.2 Flow diagrams

Processes are represented with the help of UML 2.0 activities. In this document they

receive a start and an end node. A start node is the starting point of a process, the

end node marks the end of an entire process.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 15

 Status: Final Version 3.0

For the sake of simplicity, activities will be nested within one another. Actions that

contain an activity will be marked with a fork symbol. Activity A in Diagram 2

comprises three process steps (actions). Step_2 is itself an activity comprising 2

process steps. Hence the activity Step_2 is called up within activity A, i.e. run

through from the start node of Step_2 to the end node of Step_2.

Step_3

Step_1

Step_2

Step_21

ok

Error

Stept_22

Step_2

Diagram 2 Nesting of activities

2.2.3 Other notation

In the naming of new administrative order types, the appended tag “[mandatory]”

denotes that the financial institution MUST support this administrative order type. On

the other hand, the appended tag “[optional]” means that the financial institution CAN

support this administrative order type.

Similarly, the tag “[planned]” is appended to planned features or functions.

2.3 Data types

The XML schema defines a set of primitive and derived data types that can be used

to form your own data types.

The following primitive data types are primarily used in conjunction with EBICS:

 string: string of characters with unrestricted length and structure

 boolean: boolean truth value with the characteristics “true” (=1) or “false” (=0)

 decimal: decimal numbers to any degree of accuracy

 dateTime: time stamp with date and time in accordance with ISO 8601
The structure is as follows: YYYY-MM-DDTHH:MM:SS.sssZ. The character Z

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 16

 Status: Final Version 3.0

indicates that date and time have been converted to UTC. If the date string does
not correspond to this structure, the EBICS message has to be declined or the
ES verification has to be rated as negative, respectively.

 date: date in accordance with ISO 6801

 hexBinary: hexadecimal value with unrestricted length

 base64Binary: data type to record base64-coded binary data

 anyURI: uniform resource locator (e.g. URL, IP address).

The following pre-defined data types are derived from primitive data types and are

used in the EBICS standard:

 normalizedString: string of characters that has spaces (blanks) removed at the start

and end

 token: a normalizedString that contains no line feeds and no multiple spaces in

succession

 language: nationality label in accordance with RFC 1766

 nonNegativeInteger: non-negative integer values

 positiveInteger: positive integer values.

With the help of the aforementioned data types, new data types are defined in the

EBICS schema:

 simple data types merely define restrictive or expanding characteristics with regard

to the value range of an existing primitive or derived data type, i.e. they derive from

an existing data type

 complex data types define new structures composed of fields and attributes of

different (simple or complex) data types.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 17

 Status: Final Version 3.0

3 Design decisions

This chapter will point out decisions that had a decisive influence on the design of

the EBICS protocol. It includes network-specific details as well as specifications of a

professional and technical nature.

3.1 OSI model from EBICS perspective

3.1.1 TCP/IP as package-orientated transmission layer

TCP/IP is used as a transport protocol. The data that is to be exchanged is

transmitted as packages via IP (Internet Protocol). This package transfer is

monitored by TCP (Transmission Control Protocol) as a transmission monitoring

protocol.

Communication is established using a URL (Uniform Resource Locator).

Alternatively, an IP address belonging to the respective financial institution can also

be used. The URL or IP address together with the EBICS host ID is required for

establishing a connection to the bank computer and is given to the customer upon

conclusion of the contract with the financial institution.

physical layer

(e.g. ethernet)

network layer:

IP

transport layer:

TCP

transport

encryption: TLS

application layer

HTTP(S)

application

protocol:

EBICS (XML)

simplified OSI

model including

specialisations for

the EBICS protocol

transport-

based

application-

based

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 18

 Status: Final Version 3.0

3.1.2 TLS as transport encryption

TLS was developed by the Transport Layer Security work group in IETF’s Security

Area. It is an open standard for secure transmission of package-orientated data,

originally developed by Netscape (initially under the name SSL). TLS aims to

guarantee data security on levels above TCP/IP. The protocol allows data

encryption, authentication of servers and message integrity for TCP/IP

communication.

It combines the following basic characteristics:

1. The TLS connection is confidential: With the TLS handshake, a common,

secret key is agreed using asymmetric encryption (RSA, in the case of

EBICS) that serves as a symmetric key (AES in the case of EBICS) in the

rest of the TLS session.

2. The integrity of the TLS connection is assured: The message transport

contains a message integrity verification via so-called Message

Authentication Codes (MACs). Secure hash functions (SHA-1 in the case of

EBICS) are used for the MAC evaluations.

3. The identity of the financial institution is attested by the use of server

certificates and electronic signatures; the messages from the financial

institution are authenticated by means of this TLS server authentication.

4. TLS contains mechanisms to protect against man-in-the-middle attacks on

the TLS connection between customer and bank systems. To this end, it

uses internal counters and “shared secrets”, and additionally secures the

handshake against such an attack with signed summaries of the data

exchanged thus far.

A TLS connection is established between the customer system and the bank system

for transmission of the EBICS messages between these two systems.

TLS (details see current EBICS Annex “Transport Layer Security”) with X.509v3

server certificates is used, i.e. the server MUST authenticate itself via certificate. The

type of certificate MUST be suitable for the key exchange algorithm of the selected

key.

EBICS dispenses with TLS client authentication in Version H005 to promote better

market acceptance. Later expansion to include TLS client authentication capability

(and the associated issue of X.509v3 client certificates for TLS to customer

systems) is not excluded.

The terms client and server are used as synonyms for TLS client and TLS server in

the next two subchapters. Here, the customer system assumes the role of the TLS

client, and the bank system that of the TLS server.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 19

 Status: Final Version 3.0

3.1.2.1 Pre-distribution and verification of the trust anchors

The issuer of the TLS server certificates can be both public and non-public (i.e.

bank-internal) CAs. It is the responsibility of the credit institute to ensure that a

public CA is only authorised as the issuer of its TLS certificate if this CA guarantees

adequate verification of the identity of the certificate owner.

It is the task of the financial institution to supply subscribers that wish to

communicate with the financial institution via EBICS with a trustworthy CA certificate

via the certification path of the TLS server certificate. To do this, the following two

possibilities apply:

 Delivery of the CA certificate to the customer / subscriber:

This applies to both public and non-public CAs.

 Delivery of a CA certificate (Bridge CA) with the help of which a list of trustworthy

non-public CA certificates have been signed.

The CA certificate of the financial institution is a constituent of this list. The

advantage of such a signed list is brought to bear for the subscriber when the list

contains the CA certificates of a number of financial institutions that wish to grant

bank-technical orders to the subscriber via EBICS.

Delivery of the CA certificates to customers / subscribers SHOULD take place via

electronic means. Possible delivery methods include dispatch via email or delivery

as a component of the customer’s software, or as updates for the customer’s

software.

In addition to the CA certificate, the financial institution CAN also deliver the TLS

server certificate itself to the customer / subscriber. In this case, the TLS certificate

can be used as a trust anchor during server authentication in the course of

establishment of the TLS connection.

In addition to the delivery of certificates, the financial institution MUST ensure that the

subscriber can verify the received certificate via a second, independent,

communication channel. For example, this can take place via publication of these

certificates and their fingerprints on the Internet.

In return, the subscriber is responsible for verification of the certificates that have

been received via different communication channels.

3.1.2.2 Server authentication

The server transmits its certificate to the client within the framework of the TLS

handshake.

Successful verification of the server certificate by the client is a prerequisite for

establishment of a TLS connection between client and server.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 20

 Status: Final Version 3.0

In this case, it is an X.509v3 certificate. Verification of X.509v3 certificates in general

is defined in RFC 5280, the particulars of verifying TLS server certificates within the

framework of the HTTPS handshake are described in RFC 2818.

The subscriber is responsible for using customer software that verifies the TLS

certificate in accordance with these specifications. They are also responsible for

using customer software that uses the CA certificate or TLS server certificate that

had been received in advance from the financial institution as a trust anchor in the

course of this verification.

3.1.3 HTTP(S) as a technical basic protocol

The Hypertext Transfer Protocol (HTTP) is a stateless data exchange protocol for

the transmission of data. HTTP is predominantly used in the “World Wide Web”

(WWW) for the transmission of websites.

The combination of HTTP and TLS as transport encryption is also referred to as

“HTTPS” (HTTP Secure). Port 443 (SSL) is reserved for this purpose and can be

used in an unrestricted manner by the majority of firewall configurations.

In the case of the EBICS protocol, the statelessness of HTTP forces the use of its

own session parameters that logically combine several communication steps into

one transaction.

Communication between the customer and the financial institution takes place in a
classical manner via client/server roles. As before, the financial institution also takes
on the (passive) server role and the customer takes on the (active) client role. With
this communications schema, the client sends a request to the server via HTTP
request; the server replies with an HTTP response. The request can generally be
made as a GET request (additional data coded in the URL) or a POST request
(additional data appended to the HTTP header); in the context of EBICS, POST is
used exclusively.

With EBICS, HTTP 1.1 MUST be used by both the client and the server.

3.1.4 XML as an application protocol language

The EBICS application protocol uses the HTTP(S) technical base protocol. XML

(Extensible Markup Language) has been selected as the protocol language on the

application level. The following reasons are given for this decision:

1. XML uses readable tags. Tag names/attributes can be selected in such a

way that their meaning is obvious even without documentation.

2. Freeware XML parsers are available for common operating systems and

programming languages.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 21

 Status: Final Version 3.0

3. XML messages can easily be expanded with additional elements and

attributes. It is not necessary to adapt the existing message sections to

maintain the syntactic correctness (“well-formedness”) of the message as a

whole.

4. XML schema is available as a standardised definition language for validation

of XML messages.

UTF-8 MUST be used for character encoding within the EBICS XML message. UTF-8

is supported by all XML parsers and codes backwards compatible to ASCII.

The syntax of the XML messages is set with the help of so-called XSD files (XML

Schema Definition). The following XSD files have been defined for EBICS and can

be downloaded from http://www.ebics.org (see “Specification”):

 “ebics_request_H005.xsd”
contains the XML schema for requests from the customer system

 “ebics_response_H005.xsd”
defines the XML schema for responses from the bank system

 “ebics_orders_H005.xsd” contains order-specific data structures

 “ebics_types_H005.xsd” lists simple EBICS type declarations.

In addition to these main schemas, the following specific variants for transactions

that relate particularly to key management can also be found at the same place:

 “ebics_keymgmt_request_H005.xsd“ defines the XML schema for requests from the

customer system within the framework of key management.

 “ebics_keymgmt_response_H005.xsd“ contains the XML schema for responses from

the bank system within the framework of key management.

The target namespace is defined as “urn:org:ebics:H005”

The schema "ebics_signature.xsd" has been defined for submitting the ES in

structured form. It can also be downloaded from http://www.ebics.org (see

“Specification”), schema target location http://www.ebics.org/S002:

 This schema has been defined as an independent one in order that it can be applied

outside the EBICS domain. The import of the aforementioned name space is

required for use of the ES in EBICS. It features the prefix "esig".

 The schema "ebics_signature" (not renamed/no changes for EBICS 2.5) references

structures of the XML signature standard of the W3C (see chapter 3.8). This

schema is stored at the same place under the name "xmldsig-core-schema.xsd".

http://www.ebics.org/
http://www.ebics.org/

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 22

 Status: Final Version 3.0

Each of the four XSD files with the extension "_request_H005" or "_response_H005"

defines one or more types of EBICS XML messages each of which possesses a

different XML root element with an unambiguous name.

For Standard EBICS messages "ebics_request.xsd“ defines the root element

ebicsRequest for customer system requests whereas

"ebics_response_H005.xsd“ defines the root element ebicsResponse for

responses of the bank system. For transactions of the key management

"ebics_keymgmt_request_H005.xsd“ contains three additional XML messages for

customer requests with the root elements ebicsUnsecuredRequest,

ebicsUnsignedRequest, and ebicsNoPubKeyDigestsRequest. For key

management "ebics_keymgmt response_H005.xsd“ defines the root element

ebicsKeyManagementResponse for responses of the bank system.

„ebics_H005.xsd“ includes these four XML schema files and therefore contains the

whole range of definitions of the EBICS schema version “H005”. It can also be

downloaded from http://www.ebics.org (see “Specification”). Its target namespace is

also “urn:org:ebics:H005”:

By means of this file can be verified that all global definitions in the EBICS

namespace (elements and types) have unambiguous names. This feature of the

EBICS XML protocol facilitates the processing of EBICS XML messages with the

help of standard XML tools because the declaration of the XML root element and the

EBICS namespace are already sufficient to determine the allowed format for the

complete XML message. A standard XML parser, for example, is able to recognize

by this XML fragment against which definition in the EBICS XSD files the whole

document has to be vaildated:

<ebicsRequest xmlns="urn:org:ebics:H005" Version="H005">

The Schema Location consists of one pair of references, separated by a blank. The

first member of the pair is the namespace name, and the second member is a hint

describing where to find an appropriate schema document for that namespace, e.g.

local file name ebics_request_H005.xsd:

 <ebicsRequest xmlns="urn:org:ebics:H005" Version="H005"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation=

"urn:org:ebics:H005 ebics_request_H005.xsd">

By means of the following example taken from the XML schema file

"ebics_request_H005.xsd" the referencing of EBICS XML elements and attributes

for the EBICS root structure regarding standard requests of the customer system

(root element ebicsRequestand its sub-elements) is illustrated:

http://www.ebics.org/

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 23

 Status: Final Version 3.0

Diagram 3: Root structure of the EBICS protocol

The XML root element for standard EBICS messages containing requests of the

customer system is called ebicsRequest. It contains some attributes with

fundamental information that are required for parsing the message as a whole

(attribute group VersionAttrGroup):

 Version for the EBICS protocol version (e.g. “H005”)

 Revision for the EBICS protocol revision: This attribute SHOULD also be sent to

allow technical differentiation between several (compatible) revisions of the same

protocol version.

The following elements form the direct sub-structure of ebicsRequest:

 header: The XML tag contains technical information (so-called “technical control

data”) in the subtags:

- static for the technical control data that remains constant throughout the entire

transaction.

- HostID for the EBICS host ID for the identification of the bank's EBICS computer

system. The element HostID is contained in all EBICS request messages of the

customer system (for standard transactions as well as system-related transactions).

The EBICS host ID is communicated to the customer by the financial institution.

- mutable for the mutable technical control data.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 24

 Status: Final Version 3.0

Both subtags of header MUST appear in the above sequence.

 AuthSignature: The identification and authentication signature according to the

“XML Signature” standard is disposed in this element. The XML tag MUST appear in

all messages with the exception of the administrative order types INI, HIA and HPB

(these administrative order types use their own XML schemas; see Chapter 4.4).

 body contains the actual order data, signatures (ES’s) and other data that is directly

related to the order or that is required for its evaluation.

The XML requests from the subscribers to the financial institutions are designated

as EBICS requests, the XML replies from the financial institutions are designated as

EBICS responses. The HTTP binding of an EBICS request and the associated

EBICS response is: the EBICS request is embedded in an HTTP POST request, the

EBICS response is embedded in the corresponding HTTP response.

A typical HTTP request appears as follows in EBICS (extract):

POST /ebics HTTP/1.1

Host: www.die-bank.de

Content-Type: text/xml; charset=UTF-8

Content-Length: 800

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest xmlns="http://urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd”

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 …

 </static>

 <mutable>

 …

 </mutable>

 </header>

 <AuthSignature>

 …

 </AuthSignature>

 <body>

 …

 </body>

</ebicsRequest>

A corresponding possible HTTP response is shown in the following extract:

HTTP/1.1 200 OK

Content-Type: text/xml; charset=UTF-8

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 25

 Status: Final Version 3.0

Content-Length: 1538

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_response_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 …

 </static>

 <mutable>

 …

 </mutable>

 </header>

 <AuthSignature>

 …

 </AuthSignature>

 <body>

 …

 </body>

</ebicsResponse>

Further details on the structure of EBICS protocol messages and transaction details

can be found in Chapter 5. The formats of the XML messages for the standard

responses of the bank system and the system-related messages of the key

management use different root elements the structure of which is widely analogous

to the standard request. The complete XML schemas can be found in the separate

HTML schema documentation.

The schema "ebics_hev.xsd" (also not renamed/updated for EBICS 2.5) which is

used for requests of EBICS versions supported by the bank is provided at

http://www.ebics.org (see „Specification“, see also chapter 9.5).

3.2 Compression, encryption and coding of the order data

EBICS handles bank-technical order data in a transparent manner. This means:

independent of the specific data structure of different administrative order types,

order data is handled as a binary block and is embedded in the XML structure. To

this end, this order data MUST initially always be ZIP-compressed before

transmission, then hybrid encrypted (in accordance with process E002) and the

result finally base64-coded. Exceptions: In the case of the administrative key

management order types INI, HIA and H3K transmission is unencrypted (see

Chapter 4.4.1.2.5.1 for INI, HIA and H3K). The standards that define the ZIP

algorithm and base64 format that are valid in EBICS are specified in the Appendix

(Chapter 15).

http://www.ebics.org/

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 26

 Status: Final Version 3.0

The data representation generated in this way is then to be set, for example, in the

XML element ebicsRequest/body/DataTransfer/OrderData without any

further character conversion.

The ZIP compression serves to reduce the data volume that is to be transmitted.

The actual data is symmetrically encrypted in the case of hybrid encryption. The

transaction key that is used for this purpose is again asymmetrically encrypted and

is appended, for example, in the form of the XML element

ebicsRequest/body/DataTransfer/DataEncryptionInfo/»

TransactionKey (see Chapter 6.2).

Encryption of the order data takes place in addition to TLS transport encryption. This

ensures that the order data is protected from unauthorised read access both on its

way via public networks (in addition to TLS) as well as on the other side of the TLS-

protected connection path.

For coding the binary stream, base64 only uses printable ASCII characters and thus

ensures that the order data reaches its destination in an unadulterated manner and

can be evaluated there as authentic.

3.3 Segmentation of the order data

Segmentation means the separation of large data volumes into smaller, individual

transmission segments.

With EBICS, segmentation of the order data takes place at the application protocol

layer. Order data may only be transmitted in an individual EBICS message if it does

not exceed the specified fixed size of 1 MB in compressed, encoded and base64-

coded form. This applies equally to transmit and download orders. If the 1 MB limit is

exceeded, the compressed, encrypted and base64-coded order data MUST be

separated into segments, wherein the size of each of these does not exceed the

fixed segment size of 1 MB. The segments are then transmitted in consecutive order

in individual EBICS messages.

Further details on segmentation of order data can be found in Chapter 7.

3.4 Recovering the transmission of order data (recovery) [optional]

Recovery allows the transmission of an order to be continued after the occurrence of

a transport or processing error without necessitating the re-transmission of all order

data segments that have already successfully been transmitted.

EBICS defines a recovery process at the XML application protocol layer that is

based on the sequence of transmission of order data in several fixed, pre-

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 27

 Status: Final Version 3.0

determined steps. It is an optimistic recovery process that dispenses with a separate

synchronisation step since the customer’s system generally knows the step from

which transmission of the order in question is to be continued.

Details relating to recovery can be found in Chapter 5.4.

3.5 Electronic signature (ES) of the order data

The “Electronic Signature” (ES) of the order data ensures the authenticity of the

order data on the other side of the TLS transmission path, independent of the

compression, encryption, coding and segmentation of the order data.

In the case of upload orders this is the deliberate signature of a subscriber that

documents the content commitment of the subscriber, in the case of download

orders it is the signature of the financial institution.

ES’s are generated in accordance with the Appendix (see Chapter 14), in EBICS

Version “H005” a minimum requirement is support of ES Version “A005” (see

Appendix (Chapter 14)).

3.5.1 Subscriber’s ES

The order data of upload orders MUST be signed before delivery, i.e. provided with at

least one ES. Exceptions are the administrative key management order types INI

and HIA, which are not signed in a bank-technical manner.

According to the signature process used and, regarding EBICS, supported by the

bank, the bank system can extract the hash value of the signed order data from a

subscriber’s ES with the help of the signatory’s public signature key.

The following signature classes are defined for the ES’s of subscribers, listed here
in order of reducing strength (“E” is the strongest and “T” is the weakest signature
class):

 Single signature (type “E”)

 First signature (type “A”)

 Second signature (type “B”)

 Transport signature (type “T”)

An authorisation model for ES’s is defined within the financial institution by the

assignment of signature classes to subscribers. For example, subscribers with

signature class A are entitled to provide first signatures for orders. Detailed

authorisation models CAN be defined individually for institutions, wherein the

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 28

 Status: Final Version 3.0

signature authorisation of a subscriber can be parameterised with regard to the BTF

identifiers and/or the amount limit and/or the account used.

The signature class of a subscriber’s given ES is the strongest class that can be

assigned to this ES in the authorisation model of the corresponding financial

institution.

Signature authorisations of type “T” are assigned globally to subscribers or (in

detailed authorisation models) to subscribers in combination with certain BTF

identifiers. However, they are not dependent on accounts or amount limits.

Transport signatures are not used for bank-technical authorisation of orders, but

rather merely for their (authorised) submission to the bank system.

Bank-technical ES’s are deemed to be ES’s of type “E”, “A” or “B”. Bank-technical

ES’s are used for the authorisation of orders. Orders can require several bank-

technical ES’s, which MUST then be supplied by different subscribers. Subscribers of

different customers can also be the signatory of an order.

A minimum number of required bank-technical ES’s will be agreed between the

financial institution and the customer for each supported BTF identifiers.

Details on the format of the ES and its application for order authorisation are given

in the Appendix (Chapter 11.2).

3.5.2 Financial institution’s ES [planned]

The ES of the financial institution is a planned functionality of EBICS. The

prerequisite for the use of this function is a definitive legal view relating to it.

Preparations have been made both in this detailed concept and also in the EBICS

XML schema files that will facilitate the implementation of the following stipulations

in future versions of EBICS:

 mandatory ES of the hash value and the display file of the order that is to be signed in

the case of administrative order type HVD (see Chapter 8.3.2.2).

 Primed in the schema but not usable yet: ES of download data in the case of

download orders.

 Download of the financial institution’s public bank-technical key via order type HPB

See Chapter 4.4.2.2

 Verification of the hash value of the financial institution’s public bank-technical key

within the framework of transaction initialisation.

It is a component of each transaction initialisation to verify that the financial

institution’s public key that has been made available to the subscriber. Exceptions

are the administrative key management order types INI, HIA, HPB as well as the

administrative order type HEV for the request of EBICS versions supported by the

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 29

 Status: Final Version 3.0

bank.

See Chapter 4.6.2 and Chapter 11.1.2.

 Binary format for the financial institution’s ES is analogous to the subscriber’s ES

See Appendix (Chapter 11.2.2).

3.5.3 Representation of the ES’s in EBICS messages

The ES’s of an order are represented with the help of the XML element

UserSignatureData (for the subscriber ES, which is defined in the schema file

"ebics_signature.xsd"). The structure BankSignatureData (for the bank ES) is not

usable yet (planned feature).

Each of these substitutes the abstract element EBICSSignatureData. Diagram 4

contains the graphical representation of EBICSSignatureData: A005/A006 are

contained in OrderSignatureData. ES’s are configured in accordance with the

Appendix (Chapter 14). In this structured format for signature processes from

A005/A006 on, the customer ID is already contained in the element PartnerID.

The declaration of a differing customer ID for the ES distributed among a number of

customers is only possible with order type HVE by way of special order parameters.

The financial institution’s bank-technical ES is configured analogously to the known

subscriber’s bank-technical ES (see Appendix (Chapter 11.2.2) in comparison with

Appendix (Chapter 14)), wherein the attribute PartnerID is dispensed with in this

case.

Diagram 4: XML structures UserSignatureData for the ES’s of an order (in structured

format)

The following steps are necessary to embed the ES’s of an order in EBICS

messages:

 Issue of an instance document to ebics_orders_H005.xsd or ebics_signature.xsd that

only comprises the element BankSignatureData (bank ID) or

UserSignatureData (subscriber ID).

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 30

 Status: Final Version 3.0

 ZIP compression, encryption, base64-coding of the instance document

Encryption takes place with the transaction key TransactionKey from the XML

branch ebicsRequest/body/DataTransfer/DataEncryptionInfo (see

Chapter 6.2).

 The result is set in the element SignatureData in the branch DataTransfer of

the EBICS body (see Chapter 3.1.4).

3.6 Preliminary verification [optional]

In the case of upload orders, the subscriber CAN send information in a first

transaction step that the bank system CAN use for prevalidation of the order – insofar

as it supports this functionality. Prevalidation can comprise one or more of the

following checks: Account authorisation verification, limit verification, ES verification.

If (technical) errors occur during prevalidation, it is pointless to continue

transmission of the order – particularly since the order cannot be carried out.

Subscribers can discover whether a financial institution generally supports

prevalidation via the bank parameter query (administrative order type HPD, returned

XML structure HPDResponseOrderData, attribute

ProtocolParams/PreValidation@supported). Supplied parameters for

prevalidations that are not supported by a financial institution are ignored by the

financial institution.

More details on the administrative order type HPD can be found in Chapter 9.2. See

Chapter 5.3 for details on prevalidation.

3.7 Technical subscribers

EBICS customer systems can in turn be set up as client-server systems, so-called

multi-user systems. In this case, the server takes on the part of the EBICS client

within the communication with the bank system and as such is responsible for the

transmission of orders in accordance with the EBICS specification.

Towards the bank system, this customer-sided server acts as a "technical

subscriber" which essentially is administrated within the bank system like a (human)

subscriber.

EBICS requests of a technical subscriber and a human subscriber differ from each

other only in the point that for all EBICS requests, the technical subscriber allocates

his subscriber identification to the field SystemID and generates the identification

and authentication signature for the EBICS request.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 31

 Status: Final Version 3.0

EBICS responses for the technical subscriber are always encrypted with the

technical subscriber's public encryption key.

The following applies to the technical subscriber:

- On principle, the technical subscriber's identification is assigned to the field

SystemID (in addition to the fields PartnerID and UderID) in the EBICS request. By

the presence of the field SystemID, the bank system detects that the request has

been sent by a technical subscriber.

- The technical subscriber issues the identification and authentication signature for

the EBICS request (except of the order types which do not require an identification

and authentication signature).

- The technical subscriber can execute all EBICS requests for the subscriber who is

stated in the field UserID.

- The technical subscriber cannot issue a bank-technical signature.

- The technical subscriber can submit files with a particular transport signature (D file

or submission to the EDS).

- The technical subscriber can submit files with bank-technical signatures of human

subscribers. In this case, the technical subscriber does not have to issue a transport

signature.

The following applies to the bank system's verification:

- The verification of the identification and authentication signature of the EBICS

request issued by the technical subscriber is performed on the basis of the contents

of the field SystemID.

- The order authorisation is verified by the contents of the fields PartnerID and

UserID. The content of the field SystemID is not relevant.

Only if the technical subscriber performs EBICS requests under his own name (the

field UserID contains the technical subscriber's identification), the according order

authorisation is required for the bank system.

- An account verification is not performed for technical subscribers.

- As usual, the electronic signature is verified independently of the contents of the

fields SystemID and UserID.

3.8 Identification and authentication signature

Identification and authentication of the subscriber or the customer system and the

financial institution is necessary in each transaction step to prevent the use of

resources by unauthorised persons at the bank’s end and to prevent unauthorised

state alteration of orders or data.

The identification and authentication signature represents an integral component of

the EBICS protocol as a main XML branch between the EBICS header and body

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 32

 Status: Final Version 3.0

data. It is generated in accordance with the XML signature standard and has a

number of tasks to fulfil:

1. Identification and authentication of the (technical) subscriber: With the help of

the identification and authentication signature, the bank system MUST

convince itself of the correctness of the (technical) subscriber identification of

known subscribers or customer systems.

2. Integrity of the control data/ES(s): Changes – even on the other side of the

TLS transmission path - to the ES(s) as well as the technical and order-

related data (with the exception of order data that is not acquired from the

identification and authentication signature but rather from the bank-technical

signature) are detected with the help of the identification and authentication

signature as long as the XML structure of the signed data remains

unchanged.

The identification and authentication signature (in contrast to the ES that signs the

order data) is configured via the control data and via the ES(s) and MUST be

supplied by both the customer system and the bank system in every transaction

step of each administrative order type (with the exception of the system-related

order types INI, HIA, H3K and HPB, see Chapter 4.4). Identification and

authentication of the bank-technical ES(s) connects the order data that is signed

with this/these ES(s) to the remaining protocol information and thus prevents the

unauthorised exchange of orders together with their ES(s) within an EBICS

transaction.

Details on the identification and authentication signature algorithms that are used

can be found in Chapter 11.1. It is also stipulated here that a canonisation process

(C14N) transmits the data in standardised format before generation and verification

of the signature.

In addition to the XML signature’s inherent structures, precisely those elements (and

their substructures) that possess the attribute marker @authenticate="true"

MUST go into the identification and authentication signature for signature

configuration. The occurrence of these attribute markers are stipulated in the XML

schema.

The identification and authentication signature of each EBICS message MUST be

verified by the respective message recipient.

If the identification and authentication signature of an EBICS request cannot be

successfully verified, the bank system cannot assume that the EBICS request

actually originates from the corresponding (technical) subscriber.

In this event, the sender of the EBICS request will receive a corresponding error

code (EBICS_AUTHENTICATION_FAILED). Further details can be found in

Chapters 5.5.1.2.1 and 5.5.1.2.2, in each case under the sub-heading “Verifying the

authenticity of EBICS requests”.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 33

 Status: Final Version 3.0

If, on the other hand, the identification and authentication signature of the EBICS

response cannot be successfully verified, the customer system cannot assume that

the EBICS response originates from the expected bank system. In this event, the

relevant EBICS transaction MUST be aborted by the customer system.

The settings of the customer’s software that is used to establish the connection to

the bank system, complying with the requirements of Chapter 3.1.2.2, MUST then be

verified at the customer’s end. Furthermore, it MUST be verified whether the financial

institution’s public keys are up-to-date (see also Chapter 5.5.1.2.1, sub-heading

“Verifying the hash values of the bank keys”).

3.9 X.509 data

For cryptographic algorithms (i.e. for identification and authentication, encryption,

signature), Version H005 of the EBICS protocol uses public keys in X509-standard

that have been exchanged within the framework of subscriber initialisation between

subscriber and financial institution (for key management see Chapter 4)

The structures of the W3C are referenced directly.

The element group for this is located in the EBICS XML schemas

“ebics_request_H005.xsd” and “ebics_keymgmt_request_H005.xsd”, for example in

the path ebicsRequest/body/X509Data. The type definition uses the

specification from the XML signature (see Diagram 5).

Diagram 5: X509DataType

In EBICS schema version H005, administrative order types of the key management

require X.509 data to be transmitted together with public keys.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 34

 Status: Final Version 3.0

3.10 Supported administrative order types

All standardised, system-related and reserved administrative order types in

accordance with the complete list (see Appendix Chapter 13) are supported by

transparent embedding of the order data into the XML structure.

The administrative order types

Many administrative order types are described in detail in Chapters 8 and 9

(HIA/H3K: Chapter 4.4.1, HCA/HCS: Chapter 4.6.1). A complete list can be found in

chapter 13.

Information on the support on the part of the bank (mandatory, optional, conditional)

see also chapter 13.

3.11 Order parameters

The element OrderParams has been integrated into the fixed control data (under

ebicsRequest/header/static/OrderDetails) for the transmission of order

parameters that are not part of the order data. Depending on the order type, this
abstract element has a specific concrete characteristic (see also diagram 6)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 35

 Status: Final Version 3.0

 Diagram 6: OrderParams

 BTDOrderParams for the download of a business transaction format (BTF)

 BTUOrderParams for the upload of a business transaction format (BTF)

 HVDOrderParams in the case of order parameters for HVD

 HVEOrderParams in the case of order parameters for HVE

 HVSOrderParams in the case of order parameters for HVS

 HVTOrderParams in the case of order parameters for HVT

 HVUOrderParams in the case of order parameters for HVU

The structures for the order parameters of BTD and BTU are explained in chapter 5.

The structures of the order parameters for administrative order types HVD, HVE,

HVS, HVT and HVU are explained in greater detail in Chapter 8.3.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 36

 Status: Final Version 3.0

Diagram 7: Possible characteristics for the order parameters (OrderParams)

3.12 Flow of the EBICS transactions

This chapter contains a simplified description of the protocol sequence for the

transmission of a remote data transmission order via EBICS that allows for the

stipulations in the previous chapter.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 37

 Status: Final Version 3.0

The transmission takes place in an EBICS transaction that can comprise several

transaction steps. A transaction step is a pair, comprising an EBICS request and the

corresponding EBICS response.

The first transaction step is the transaction initialisation step. Subscriber-related

authorisation verifications are carried out in this step, such as e.g. the verification of

authorisations for specific BTF identifiers. Successful authorisation verification is a

prerequisite for continuation of the transaction. Furthermore, the ES’s of the order

are transmitted in this transaction step: in the case of upload orders, the ES’s of the

signatory are transmitted in the EBICS request; in the case of download orders,

possibly the financial institution’s bank-technical ES is transmitted in the EBICS

response.

After transaction initialisation, a number of transaction steps usually follow in which

the segments of order data are transmitted sequentially and in consecutive order.

Upload orders that are sent to the bank system via EBICS can be authorised using

two different methods:

Method 1: Authorisation by means of one or more bank-technical ES

The bank-technical ES’s of an order file must be given by different subscribers. In

case of the EDS, these subscribers may in special cases belong to different

customers (customer-ID-spanning signature). The ES’s can be submitted to the

financial institution by different ways , while every ES submitted with a single EBICS

transaction originates from the same customer.

1. Submission of the order data together with one or more ES's by way of an upload

order with a present signature flag All ES's that are submitted in this manner

originate from the customer of the party that submitted the order.

If the transmitted ES's are not sufficient for the bank-technical approval

a) the order is transferred to the EDS if the optional attribute @requestEDS ist

present. This means that the customer is able to add EDSs (electronic distributed

signatures) via HVE .

b) the order is rejected if the optional attribute @requestEDS is not present.

2. Submission of outstanding bank-technical ES’s with the help of

administrative order type HVE

If an ES is submitted via an HVE transaction, this ES has to originate from the

customer of the party that submitted the HVE transaction:

HVE permits the special case of the customer-ID-spanning signature because the

ES's submitted via HVE do not necessarily have to originate from the customer of

the party that submits the orders.

3.

Method 2: Authorisation by means of an accompanying note signed by hand

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 38

 Status: Final Version 3.0

For the transmission of the order file the signature flag of the upload order is not

present.

Within the framework of the EBICS transaction, an ES of signature class "T" is

transmitted together with the data of the order. The order is not passed on to the

EDS but directly to the bank-specific post-processing.

If the submitting subscriber possesses the authorisation for issuing a bank-technical

ES in the bank system and signatures are submitted without the signature flag these

signatures are strictly assessed only as transport signatures. The order must not be

passed to the EDS either.

The meaning and admissible settings of the signature flag are described in the

Appendix (Chapter Fehler! Verweisquelle konnte nicht gefunden werden.).

Transmission of an upload order with a (compressed, encoded and base64-coded)

order data volume of 3 MB is represented by way of example with the help of the

sequence diagram in Diagram 8. The EBICS transaction relating to an upload order

is terminated as soon as the last order data segment has been successfully

transmitted to the financial institution.

customer system bank system

transfer of data segment 1 for transaction xxx

transaction initialisation, transfer of EUs

ok, unique transaction ID = xxx

transfer of data segment 2 for transaction xxx

transfer of data segment 3 for transaction xxx

ok

ok

ok

Diagram 8: Example of the sequence of an EBICS transaction for an upload order

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 39

 Status: Final Version 3.0

Transmission of a download order with a (compressed, encoded and base64-coded)

order data volume of 3 MB is represented by way of example with the help of the

sequence diagram in Diagram 9. In the case of download orders, receipt of the

download data is confirmed with an acknowledgement step. After this, the EBICS

transaction for the download order is terminated.

customer system bank system

transfer of data segment 1 for transaction xxx

transaction initialisation, transfer of EUs

ok, unique transaction ID = xxx

transfer of data segment 2 for transaction xxx

transfer of data segment 3 for transaction xxx

ok

ok

ok

customer system bank system

request data segment 2 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx, transfer of data segment 1

request data segment 3 for transaction xxx

receipt for transaction xxx (acknowledgement)

ok, transfer of data segment 2

ok, transfer of data segment 3

ok

Diagram 9: Example of the sequence of an EBICS transaction for a download order

Further details on the sequence of EBICS transactions can be found in Chapter 5.

3.13 Interpretation of BTF element combinations by the bank server

This chapter describes how the BTF element groups service and service filter respectively

which are delivered by EBICS requests are interpreted by the bank server:

Adminstrative EDS download orders:

Only delivered BTF elements in the filter are considered, missing (optional) elements are “wildcards”.

The user will get all available matching orders, authorization of the user assumed.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 40

 Status: Final Version 3.0

Upload Requests:

The BTF elements must be complete and correct (corresponding to the uploaded case of business

transaction). This means that also a missing (optional) element has a meaning!

But it depends on the bank (contract) how the authorizations are defined and stored:

It is independent of the EBICS communication, whether there is a model which stores all used/allowed

single BTF combinations or hierarchical models where groups of business transactions are agreed

(e.g. user is allowed to send SDD not dependent on service options and/or scopes)

Downloading files:

The BTF elements must be complete and correct (corresponding to the type of file which the user

wants to download). This means that also a missing (optional) element has a meaning!

HKD / HDT:

Complete declaration of each BTF element combination the user/partner is authorized to in the

HKD/HTD response. This means again that a missing elements has a meaning.

3.14 Interpretation of ES /EDS flag combinations by the bank server

This table describes the meaning of the flags for ES and electronic distributed signature

(EDS):

ES
flag

EDS

Flag
Condition Reaction Matches with

disestablished order
attribute
(for information only)

x - ES must be
sufficient

Rejection, if ES not sufficient
(“Authorization failed” 090003)

OZHNN

x x Customer has a
contract for EDS
(allowed to do
HVE)

If sufficient number of valid ES,
EDS Flag is ignored.
Rejection, if no contract and
number of ES not sufficient.
(“EBICS Distributed Signature
authorization failed” 091007)

OZHNN

- - File is not
signed/authorized
within EBICS

Depends on the contract:
If signatures are needed and no
signature outside EBICS is
agreed the order is rejected
(“Authorization failed” 090003)

DZHNN

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 41

 Status: Final Version 3.0

4 Key management

4.1 Overview of the keys used

The EBICS protocol provides three RSA key pairs for each subscriber. These are

used for the following purposes:

 bank-technical/technical ES of the order data that the subscriber/client system sends

to the bank system

 identification and authentication of the subscriber by the bank system via identification

and authentication signature

 decryption of the (symmetrical) transaction key used to encrypt the order data that the

subscriber retrieves from the bank system.

Based on their use, one also talks of

 public / private bank-technical keys

 public / private identification and authentication keys

 public / private encryption keys

EBICS allows the use of three different key pairs per subscriber. In doing this,

EBICS promotes the use of at least two different key pairs for each subscriber:

 One key pair is used exclusively for the bank-technical electronic signature.

 The use of one single key pair is allowed for identification and authentication of the

subscriber by the bank system AND decryption of transaction keys.

Analogously to the subscriber keys, EBICS provides three different RSA key pairs

for the bank system. These are used for the following purposes:

 bank-technical ES of the order data that is retrieved by a

subscriber from the bank system

In EBICS Version “H005” the financial institution’s bank-technical ES is only planned

(see Chapter 3.5.2).

 identification and authentication of the financial institution by the subscriber via

identification and authentication signature

 Decryption of the (symmetrical) transaction key to encrypt bank-technical order data

sent by a subscriber to the financial institution.

The same restrictions as for the subscriber keys apply with regard to the use of an

RSA key pair for different purposes.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 42

 Status: Final Version 3.0

The subscriber’s keys are connected to processes that the subscriber would like to

use for generation/verification of the ES, for generation/verification of the

identification and authentication signature and for the encryption of order data.

These processes are identified by unambiguous Versions so that different

subscribers can use e.g. different processes for the ES. A prerequisite of EBICS is

that the respective processes are administrated in the bank system for each

subscriber.

Version “H005” of the EBICS protocol allows for the use of the following processes:

 “X002” for the identification and authentication signature

 ”A005“ or ”A006“ for the ES

 “E002” for the encryption.

Details of these processes can be found in the Appendix (Chapter 11.1, Chapter

11.2 and Chapter 11.3).

Subscribers of the same customer generally use the same processes for

identification and authentication signature, encryption and ES.

A subscriber’s orders can be delivered by a technical subscriber if both subscribers

use the same processes for identification and authentication signature, encryption

and bank-technical signature. In this case, administration of the public bank keys for

all subscribers that wish to work with the same processes can be centralised at the

customer’s end.

4.2 Representation of the public keys

EBICS defines the administrative order types HIA, HCA, HCS and HPB, whose

bank-technical order data constitutes public keys of the financial institution or the

subscriber. For these order types, embedding of the public keys in EBICS messages

takes place using newly-defined types based on the XML schema (see schema

definition file ebics_types_H005.xsd). These types are contained in the following

table:

Key type XML type

Identification and authentication key AuthenticationPubKeyInfoType

Bank-technical key SignaturePubKeyInfoType

Encryption key EncryptionPubKeyInfoType

The graphical representation of the XML types

AuthenticationPubKeyInfoType, SignaturePubKeyInfoType,

EncryptionPubKeyInfoType is contained in Diagram 10, Diagram 11, and finally

Diagram 12.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 43

 Status: Final Version 3.0

The XML structures are composed in a similar manner to one another: They contain

information relating to the usedX.509 certificate. Moreover, the version of the

process for configuration/verification of the identification and authentication

signature (see element AuthenticationVersion) is a component of the

identification and authentication key. Analogously, the version of the encryption

process is a component of the encryption key and the version of the bank-technical

ES is a component of the bank-technical key.

Diagram 10: Definition of the XML schema type AuthenticationPubKeyInfoType

Diagram 11: Definition of the XML schema type SignaturePubKeyInfoType

Diagram 12: Definition of the XML schema type EncryptionPubKeyInfoType

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 44

 Status: Final Version 3.0

4.3 Actions within key management

Actual processing of the key management upload orders must take place

synchronously to their transmission via EBICS. Hence processing must be

completed before the final EBICS response of this transmission is sent to the

subscriber.

This requirement applies in the case of INI and HIA as well as H3K (see Chapter

4.4.1) so that execution of subscriber initialisation is not delayed unnecessarily. It

also applies equally in the case of SPR (see Chapter 4.5) so that the subscriber

revocation is immediately activated. Subsequently-initialised EBICS transactions for

the transmission of a bank-technical order are rejected at EBICS protocol level until

the subscriber has again attained the state “Ready”. (Subscriber ES’s that have

been successfully verified before the suspension also remain valid after the

suspension. Such an ES can continue to be used for authorisation of an open order

within the framework of the EDS).

Finally, this requirement also applies for all PUB, HCS, and HCA (see Chapter

4.6.1) to allow successful processing of immediately-following EBICS transactions

from the relevant subscriber that already use the updated keys. (Subscriber ES’s

that have been successfully verified before execution of PUB or HCS, respectively,

also remain valid after the processing of PUB or HCS and the associated

amendment of the bank-technical subscriber key. Such an ES can continue to be

used for authorisation of an open order within the framework of the EDS).

4.4 Initialisation

A range of prerequisites must be fulfilled by the subscriber of a customer in order for

them to be able to implement bank-technical EBICS transactions with a particular

financial institution.

The basic prerequisite is the conclusion of a contract between customer and

financial institution. In this contract it will be agreed as to which business

transactions (BTF identifiers) the customer will conduct with the financial institution,

which accounts are concerned, which of the customer’s subscribers work with the

system and the authorisations that these subscribers will possess.

If the customer does not yet have access to a corresponding customer product, they

will receive the client software and the financial institution’s access data (bank

parameters) after conclusion of the contract. The financial institution will set up the

customer and subscriber master data in the bank system in accordance with the

contractual agreements. In doing this, the individual subscribers will receive the

state “New”.

Details of the contractual agreements are not a subject of this standard, they are to

be arranged individually between the customer and the financial institution.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 45

 Status: Final Version 3.0

Other prerequisites are successful subscriber initialisation and download of the

financial institution’s public keys by the subscriber. The necessary steps that must

be taken by the financial institution, the customer and the subscriber and the

chronological dependencies of these steps are contained in Diagram 13. Diagram

14 shows an example of a process by way of a sequence diagram. The state of the

public bank keys at the subscriber’s end is shown on the life-line of the subscriber

system. Correspondingly, the state of the public subscriber keys at the bank’s end

and the state of the subscriber themselves are shown on the lifeline of the bank

system. Details of these diagrams are explained in the following chapters.

customer system bank system

transfer of data segment 1 for transaction xxx

transaction initialisation, transfer of EUs

ok, unique transaction ID = xxx

transfer of data segment 2 for transaction xxx

transfer of data segment 3 for transaction xxx

ok

ok

ok

customer system bank system

request data segment 2 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx, transfer of data segment 1

request data segment 3 for transaction xxx

receipt for transaction xxx (acknowledgement)

ok, transfer of data segment 2

ok, transfer of data segment 3

ok

INI execution

via EBICS

HIA execution

via EBICS

Key pair generation for

authentication signature and encryption

Generate the initialisation letter for

the public EU-key

Generate the initialisation letter for

the public authentication key

and the public encryption key

Key pair generation for the EU

Mail the manually signed

initialisation letter to the credit institute

Mail the manually signed

initialisation letter to the credit institute

Release of the public EU-key,

public authentication key,

public encryption key

Release of the user

Retrieve the credit institute‘s public keys:

HPB via EBICS

Compare the credit institute‘s public keys

as retrieved from 2 different communication channels

independent from each other

[Key pairs already exist]

else

Sign agreement between

credit institute and partner

Sign agreement between

credit institute and partner

Possibly installation of client software;

Customize according to

the bank parameter

Add the users of the partner to

the credit institute‘s User Management

Bank Partner User

Diagram 13: Necessary steps prior to actual processing of business transactions via
EBICS (using INI / HIA)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 46

 Status: Final Version 3.0

Public authentication key credit institute [missing]

Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

User [Partly initialised(INI)]]

Public authentication key User [missing]

Public encryption key User [missing]

Public EU-key User [New]

Public authentication key credit institute [missing]

Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

User [Initialised]

Public authentication key User [New]

Public encryption key User [New]

Public EU-key User [New]

User [Ready]

Public authentication key User [Released]

Public encryption key User [Released]

Public EU-key User [Released]

Public authentication key credit institute [missing]

Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

Public authentication key credit institute [New]

Public encryption key credit institute [New]

Public EU-key credit institute [New]

User [Ready]

Public authentication key User [Released]

Public encryption key User [Released]

Public EU-key User [Released]

INI-request(public EU-key User)

INI-response

HIA-request(public authentication key User,

public encryption key User)

HIA-response

Initialisation letter INI

Initialisation letter HIA

HPB-request

HPB-response(public authentication key credit institute,

public EU-key credit institute,

public encryption key credit institute)

Public authentication key credit institute [Released]

Public encryption key credit institute [Released]

Public EU-key credit institute [Released]

User [Ready]

Public authentication key User [Released]

Public encryption key User [Released]

Public EU-key User [Released]

Public authentication key credit institute [missing]

Public encryption key credit institute [missing]

Public EU-key credit institute [missing]

Customer system Bank system

Release of User‘ public keys

and of User itself

Comparison credit institute‘s

public keys

User [New]

Public authentication key User [missing]

Public encryption key User [missing]

Public EU-key User [missing]

Diagram 14: Process example: Subscriber initialisation followed by download and
verification of the bank keys (using INI / HIA)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 47

 Status: Final Version 3.0

4.4.1 Subscriber initialisation

4.4.1.1 General description

Transmission of the subscriber’s public keys to the bank system is necessary for

initialisation of the subscriber with the financial institution. The supported versions

for the ES, the encryption and the identification and authentication signature are

components of the bank parameters. The subscriber’s bank-technical key must be

newly generated if the subscriber does not have a suitable bank-technical key or

does not wish to use an existing bank-technical key for the new bank connection.

The same applies for the encryption key and the identification and authentication

key.

The subscriber transmits his public keys to the financial institution as follows:

Alternative 1 (by two independent communication paths):

 via EBICS by means of the following administrative order types:

- INI: send the public bank-technical key (key for the ES / authorisation key).

- HIA: send the public identification and authentication key and the public encryption

key.

Transmission of the public subscriber keys to the financial institution via INI and HIA
is referred to as subscriber initialisation

 by post with initialisation letters signed by the subscriber.

The use of signed initialisation letters permits the financial institution to:

 verify the authenticity of the public subscriber’s keys transmitted via EBICS as a
prerequisite for the activation of subscribers

 guarantee the reproducibility of subscribers’ key histories by storing the initialisation
letters.

The sequence for processing of INI and HIA is not fixed, but within the framework of

subscriber initialisation precisely one INI order and precisely one HIA order will be

implemented. Transmission of the public subscriber keys via two separate orders in

any order requires definition of the subscriber states “Partially initialised(INI)” and

“Partially initialised(HIA)”. Within the framework of subscriber initialisation, the

subscriber takes on the corresponding state depending on whether the first

successful order is INI or HIA.

This initialisation procedure (alternative 1) is always admissible: for RSA keys

without as well as for keys with certificates issued by a CA. However, it is assumed

that in each case initialisation letters are used for alternative 1. The public keys of

the subscriber/user have still to be sent to the bank by the administrative order types

INI (public bank-technical key) and HIA (public identification and authentication key

as well as the public encryption key). However, in order to guarantee the authenticity

of the subscriber’s (user’s) public keys, it must be ensured that the bank receives

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 48

 Status: Final Version 3.0

the public bank keys via a second, independent communication path (initialisation

letter for INI and for HIA, respectively). Having received the keys via different

communication paths, the bank first compares the keys before approving them.

Alternative 1 can also be used if alternative 2 fails.

For details and workflow concerning alternative 1, see chapter 4.4.1.2

Alternative 2 (in one step):

This alternative is only possible if the bank-technical (authorisation) key is based on

a certificate issued by a CA, the authenticity of this particular public key is

guaranteed by a CA as long as customer and bank have agreed to use this certain

certificate and as long as it is valid. In this case, the initialisation letter can be

resigned.

 via EBICS by means of the administrative order type:

- H3K: send the public keys for the bank-technical signature (signature for

authorisation; ES), and identification and authentication as well as encryption keys.

For the initialisation via CA-issued certificates, the administrative order type H3K

simplifies the workflow:

1. All public keys can be sent in one step (H3K-request) using a certification issued by
a CA for the bank-technical (ES) key.

2. INI and HIA letters are not necessary.

Details and workflow see chapter 4.4.1.3

4.4.1.2 Initialisation via INI and HIA

4.4.1.2.1 INI

Processing of INI is permissible if the state of the respective subscriber is “New”,

“Suspended” or “Partially initialised(HIA)”. INI comprises a single EBICS

request/response pair. The following applies for the EBICS request of INI:

 it does not require an identification and authentication signature since the subscriber’s

public identification and authentication key has not yet been activated by the

financial institution and hence cannot be used for verification.

 it does not contain a bank-technical signature, since the subscriber’s public bank-

technical key is being transmitted for the first time in this request. This bank-

technical key cannot be used by the financial institution to verification the bank-

technical signature since its authenticity has not yet been ascertained.

 it contains the order data, i.e. the subscriber’s public bank-technical key in

unencrypted form since the subscriber does not yet have the financial institution’s

public encryption key (at least in the event of first initialisation).

The flow diagram in Diagram 15 represents the processing at the bank’s end that

takes place on receipt of an INI request. Error situations that result from an invalid

combination of customer/subscriber ID or an inadmissible subscriber state are not

passed directly to the sender of the INI request. Instead, the sender receives the

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 49

 Status: Final Version 3.0

technical error code

EBICS_INVALID_USER_OR_USER_STATE. INI does not give any errors of the

type “Unknown subscriber” or “Inadmissible subscriber state” so that potential

attackers are not given precise information about the validity of subscriber IDs or the

state of subscribers. On the other hand, internal documentation must take place on

the part of the financial institution to record the precise reason for the error.

The flow diagram provides verification of the subscriber state so that INI requests

are rejected on the EBICS level if the subscriber state is inadmissible for INI.

Admissible states for INI are: “New”, “Suspended” and “Partially initialised(HIA)”.

Here, the state of the subscriber is verified from the header data of the request. The

order data of the INI request (see Chapter 4.4.1.2.5.1) merely contains the

subscriber whose bank-technical key is to be transmitted. For this reason, the

subscriber from the header data should correspond with the subscriber from the

order data. The EBICS protocol does not provide a verification for this

correspondence. However, before actual processing of the order the state of the

subscriber is verified (again) which is a part of the order data of INI.

Processing of an INI order can return the following error codes:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_SIGNATURE

This business related error occurs when the order data contains an inadmissible

version of the bank-technical signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_SIGNATURE

This business related error occurs when the order data contains a bank-technical

key of inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT

This business related error occurs when the order data does not correspond with the

designated format (see Chapter 4.4.1.2.5.1)

 EBICS_INVALID_USER_OR_USER_STATE

This technical error occurs when the order data contains a subscriber that is either

unknown or whose state is inadmissible for INI. The following subscriber states are

admissible: New, Suspended, Partially initialised (HIA).

 For Return codes relating to CA-issued certificates, refer to Annex 1

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 50

 Status: Final Version 3.0

INI order check and execution

INI response creation

Sending INI response

Receiving INI request

[RC ≠ 0]

[RC = 0]

RCT = 0

RCF = RC

RCT = RC

RCF = 0

else

[RC is a

non-technical error]

RCT = 0

RCF = 0

[RC ≠ 0]

[RC = 0]

State check for user

Valid states: New, Locked,
Partly Initialised(HIA)

RCT = EBICS_INVALID_USER_OR_USER_STATE

RCF = 0

Validity check

user ID/ partner ID

[RC ≠ 0]

[RC = 0]

RCT = EBICS_INVALID_USER_OR_USER_STATE

RCF = 0

Diagram 15: Processing of an INI request at the bank’s end

The EBICS response for INI does not contain an identification and authentication

signature of the financial institution since the subscriber does not yet have the

financial institution’s public identification and authentication key with which they can

carry out a verification.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 51

 Status: Final Version 3.0

In Diagram 14 INI is carried out before HIA, and correspondingly the subscriber

changes from the state “New” to the state “Partially initialised(INI)”. The state

“Partially initialised(INI)” means:

 The subscriber’s bank-technical key is available to the bank system, although it has

not yet been activated

 The bank system does not (yet) have the subscriber’s public identification and

authentication key or public encryption key.

In this state, the subscriber can only carry out one of the following two actions:

 Implement administrative order type HIA and then transfer into the state “Initialised”:

Orders that are not equal to HIA that are submitted by the subscriber in this state

are rejected by the bank system. Bank-technical signatures of the subscriber

relating to existing orders are evaluated as invalid if the subscriber has the state

“Partially initialised(INI)” at the time of verification.

 Have themselves suspended by the financial institution via telephone call:

Following this, the only option is re-initialisation of the subscriber.

After the successful processing of INI, the subscriber sends a signed initialisation

letter for INI. See Chapter 4.4.1.2.3 for details of the content of the initialisation

letter.

4.4.1.2.2 HIA

Processing of HIA is permissible if the state of the subscriber is “New”, “Suspended”

or “Partially initialised (INI)”. HIA comprises a single EBICS request/response pair.

The following applies for the EBICS request of HIA:

 it does not contain an identification and authentication signature, since the

subscriber’s public identification and authentication key is being sent for the first

time in this request. This subscriber’s public identification and authentication key

cannot be used by the financial institution to verify the identification and

authentication signature since its authenticity has not yet been ascertained.

 it does not contain a bank-technical signature since the subscriber’s public bank-

technical key has not yet been activated by the financial institution and hence

cannot be used for verification.

 it contains the order data, i.e. the subscriber’s public encryption key and public

identification and authentication key in unencrypted form since the subscriber does

not yet have the financial institution’s public encryption key (at least on the event of

first initialisation).

The flow diagram in Diagram 16 represents the processing at the bank’s end that

takes place on receipt of an HIA request. In an analogous manner to INI, error

situations that result from an invalid combination of customer/subscriber ID or an

inadmissible subscriber state are also here not passed directly to the sender of the

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 52

 Status: Final Version 3.0

HIA request. Instead, the sender receives the technical error code

EBICS_INVALID_USER_OR_USER_STATE. HIA does not give any errors of the

type “Unknown subscriber” or “Inadmissible subscriber state” so that potential

attackers are not given precise information about the validity of subscriber IDs or the

state of subscribers. Also analogously to INI, internal documentation must take

place on the part of the financial institution to record the precise reason for the error.

The flow diagram provides verification of the subscriber state so that HIA requests

are rejected on the EBICS level if the subscriber state is inadmissible for HIA.

Admissible states for HIA are: “New”, “Suspended” and “Partially initialised(INI)”.

Here, the state of the subscriber is verified from the header data of the request. The

order data of the HIA request (see Chapter 4.4.1.2.5.1) merely contains the

subscriber whose identification and authentication key and encryption key are to be

sent. For this reason, the subscriber from the header data should correspond with

the subscriber from the order data. The EBICS protocol does not provide a

verification for this correspondence. However, before actual processing of the order

the state of the subscriber is verified (again) which is a part of the order data of HIA.

Processing of an HIA order can return the following error codes:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_ENCRYPTION

This business related error occurs when the order data contains an inadmissible

version of the encryption process

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_AUTHENTICATION

This business related error occurs when the order data contains an inadmissible

version of the identification and authentication signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_ENCRYPTION

This business related error occurs when the order data contains an encryption key

of inadmissible length

 EBICS_KEYMGMT_KEYLENGTH_ERROR_AUTHENTICATION

This business related error occurs when the order data contains an identification

and authentication key of inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT

This business related error occurs when the order data does not correspond with the

designated format (see Chapter 4.4.1.2.5.1)

 EBICS_INVALID_USER_OR_USER_STATE

This technical error occurs when the order data contains a subscriber that is either

invalid or whose state is inadmissible for HIA. The following subscriber states are

admissible: New, suspended, Partially initialised (INI).

 For Return codes relating to certificates, refer to Annex 1

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 53

 Status: Final Version 3.0

HIA order check and execution

HIA response creation

Sending HIA response

Receiving HIA request

[RC ≠ 0]

[RC = 0]

RCT = 0

RCF = RC

RCT = RC

RCF = 0

else

[RC is a

non-technical error]

RCT = 0

RCF = 0

[RC ≠ 0]

[RC = 0]

State check for user

Valid states: New, Locked,
Partly Initialised(INI)

RCT = EBICS_INVALID_USER_OR_USER_STATE

RCF = 0

Validity check

user ID/ partner ID

[RC ≠ 0]

[RC = 0]

RCT = EBICS_INVALID_USER_OR_USER_STATE

RCF = 0

Diagram 16: Processing an HIA request at the bank’s end

The EBICS response for HIA does not contain an identification and authentication

signature of the financial institution since the subscriber does not yet have the

financial institution’s public identification and authentication key with which they can

carry out a verification.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 54

 Status: Final Version 3.0

The meaning of the state “Partially initialised (HIA)“, that has not been taken into

consideration in Diagram 14 is as follows:

 The bank system has the subscriber’s public identification and authentication key and

public encryption key. Neither of these have been activated by the bank system

 The bank system does not (yet) have the subscriber’s public bank-technical key.

In this state, the subscriber can only carry out one of the following two actions:

 Carry out administrative order type INI:

Orders that are not equal to INI that are submitted by the subscriber in this state are

rejected by the bank system. Bank-technical signatures of the subscriber relating to

existing orders are evaluated as invalid if the subscriber has the state “Partially

initialised(HIA)” at the time of verification.

 Have themselves suspended by the financial institution via telephone call:

Following this, the only option is re-initialisation of the subscriber.

After the successful processing of HIA, the subscriber sends a signed initialisation

letter for HIA to the financial institution. See Chapter 4.4.1.2.3 for details of the

content of the initialisation letter.

4.4.1.2.3 Initialisation letters

Initialisation letters for INI contain the public bank-technical subscriber certificate,
initialisation letters for HIA contain the subscriber’s public identification and
authentication certificate and the subscriber’s public encryption certificate. All
certificates are presented in PEM format. In addition to the public subscriber
certificates, the initialisation letters contain the following data:
:

 User name (optional): customer software-internal subscriber’s name

 Date: Date of processing of the corresponding EBICS order

 Time: Time of processing of the corresponding EBICS order

 Recipient bank

 Subscriber ID

 Customer ID.

In addition to the public subscriber certificate, the initialisation letter contains the
following data:

 Purpose of the public subscriber certificate:

 - Bank-technical electronic signature

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 55

 Status: Final Version 3.0

 - Identification and authentication signature

 - Encryption.

 Processes:

 - Bank-technical electronic signature process: A005 or A006

 - Identification and authentication signature process: X002

 - Encryption process: E002.

 Hash value of the public certificate in hexadecimal representation

- The initialisation letter for INI contains the SHA-256 hash value of the certificate for

the ES (in the case of A005 or A006, respectively). The composition of the hash

value is described in chapter 14 for both processes.

- The initialisation letter for HIA contains the SHA-256 hash value of the public

identification and authentication certificate and the SHA-256 hash value of the

public encryption certificate. The printed SHA-256 hash values of the certificate

X002, E002 as well as of the A005 and A006 certificate are composed by

calculating the SHA2-256 hash value of the certificate in DER binary format, and

presenting the resulting byte array (32 bytes) into hexadecimal representation (64

char) and in uppercase.

Initialisation letters for INI contain the public bank-technical subscriber certificate of

the user, initialisation letters for HIA contain the subscriber’s public identification and

authentication certificate and the subscriber’s public encryption certificate. Examples

of initialisation letters can be found in the Appendix (Chapter 11.5.1).

4.4.1.2.4 Activation of the subscriber by the financial institution

After successful processing of INI and HIA, the subscriber is initially set to the state

“Initialised”: the bank system has all necessary public keys for the subscriber, but it

will not have activated them yet. Subscribers that are set to the state “Initialised”

cannot submit orders or signatures via EBICS: all attempts to do so will be rejected

by the bank system.

After successful verification of the initialisation letters by the financial institution, the

public subscriber keys are activated and the subscriber’s state is set to “Ready” in

the bank system. The state “Ready” means that the bank has all of the information

necessary for the subscriber to successfully implement submission of orders or

signatures. See also Diagram 14. The subscriber can also especially download the

financial institution’s so-called bank parameters via the administrative order type

HPD (see Chapter 9.2).

Diagram 17 clarifies once again the state transitions of a subscriber as described

above. Deletion of subscribers from bank systems’ subscriber administration

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 56

 Status: Final Version 3.0

databases is not covered in this standard. For this reason, a further state “Deleted”

and an end state will not be displayed.

New

Partly initialised (INI)

Initialised

Ready

Partly initialised (HIA)

Locked

INI

INI

HIA

HIA

SPR, call credit institute
PUB & HCA

or HCS

User release by the credit
institute

HIA INI

Diagram 17: State transition diagram for subscribers

The (renewed) processing of INI or HIA is not admissible in the subscriber state

“Ready”. This is to prevent unintentional transfer of the subscriber from the state

“Ready” to the state “Partially initialised(INI)” or “Partially initialised(HIA)”. The result

of this would be that the affected subscriber would not be able to implement any

further bank-technical orders for the time being.

Subscribers that are set to the state “Ready” must firstly suspend their remote

access data transmission to the bank system before they can carry out renewed

subscriber initialisation. Details on the suspension of subscribers can be found in

Chapter 4.5.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 57

 Status: Final Version 3.0

4.4.1.2.5 Description of the EBICS messages

4.4.1.2.5.1 Format of the order data

The order data for INI is an instance document that conforms with

ebics_signature.xsd and comprises the top-level element

SignaturePubKeyOrderData.

SignaturePubKeyOrderData is defined as follows via the XML schema:

Diagram 18: Definition of the XML schema element SignaturePubKeyOrderData for
INI order data (identical to PUB, see respective chapter)

The order data for HIA is an instance document that conforms with

ebics_orders_H005.xsd and comprises the top-level element

HIARequestOrderData. HIARequestOrderData is defined as follows via the

XML schema:

Diagram 19: Definition of the XML schema element HIARequestOrderData for HIA
order data

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 58

 Status: Final Version 3.0

The order data for INI and HIA are each compressed and base64-coded and

embedded into the corresponding EBICS request.

4.4.1.2.5.2 Description and example messages

This chapter describes the EBICS messages for the administrative order types INI

and HIA. INI and HIA requests are instance documents that conform with

ebics_keymgmt_request_H005.xsd with the top-level element

ebicsUnsecuredRequest. INI and HIA responses are instance documents that

conform with ebics_keymgmt_response_H005.xsd with the top-level element

ebicsKeyManagementResponse.

The data that is a component of these messages is listed here. The corresponding

XML elements are given in brackets in XPath notation. The following conventions

apply:

- Data that is fundamentally optional is marked “(optional)”.

- Data that may only be missing under certain conditions is instead marked

“(conditional)”.

- Optional XML elements of the EBICS messages that are missing in the description

may not appear in the EBICS message.

- Optional XML elements in the EBICS messages that appear in the description

without the designation “(optional)” or “(conditional)” must always be placed in

accordance with the description.

This description is supplemented by examples.

 Transmission of the following data in the INI request (see example in Diagram 20)

Host ID of the EBCIS bank computer system

(ebicsUnsecuredRequest/header/static/HostId)

Subscribers (ebicsUnsecuredRequest/header/static/PartnerID,

ebicsUnsecuredRequest/header/static/UserID) whose public bank-

technical key is to be sent to the financial institution

(Optional) technical subscribers

(ebicsUnsecuredRequest/header/static/PartnerID,

ebicsUnsecuredRequest/header/static/SystemID)

SystemID can be contained in the message if the customer system is a multi-user

system. Since INI requests do not contain an identification and authentication

signature and the order data is unencrypted, declaration of the SystemID is optional.

- (Optional) information on the customer product

(ebicsUnsecuredRequest/header/static/Product)

- Administrative Order type

(ebicsUnsecuredRequest/header/static/OrderDetails/AdminOrderType) set to “INI”

- Security medium for the subscriber’s bank-technical

key(ebicsUnsecuredRequest/header/static/SecurityMedium)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 59

 Status: Final Version 3.0

The admissible settings are listed in the Appendix (Chapter 12.3)

- Order data (ebicsUnsecuredRequest/body/DataTransfer/OrderData).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsUnsecuredRequest

 xmlns="urn:org:ebics:H005" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 <PartnerID>CUSTM001</PartnerID>

 <UserID>USR100</UserID>

 <OrderDetails>

 <AdminOrderType>INI</AdminOrderType>

 </OrderDetails>

 <SecurityMedium>0200</SecurityMedium>

 </static>

 <mutable/>

 </header>

 <body>

 <DataTransfer>

 <!--INI file according to chapter Fehler! Verweisquelle konnte nicht gefunden

werden., compressed and base64 encoded -->

 <OrderData>

 …

 </OrderData>

 </DataTransfer>

 </body>

</ebicsUnsecuredRequest>

Diagram 20: EBICS request for administrative order type INI

 Transmission of the following data in the INI response (see example in Diagram

21)

- Bank-technical return code

(ebicsKeyManagementResponse/body/ReturnCode)

- Order number (ebicsKeyManagementResponse/header/mutable/OrderID)

This number is assigned by the bank server automatically.

- Technical return code

(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text

(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Optional) time stamp for the last updating of the bank parameters

(ebicsKeyManagementResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsKeyManagementResponse

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt_response_H005.xsd"

 Version="H005" Revision="1">

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 60

 Status: Final Version 3.0

 <header authenticate="true">

 <static/>

 <mutable>

 <OrderID>A101</OrderID>

 <ReturnCode>000000</ReturnCode>

 <ReportText>[EBICS_OK] OK</ReportText>

 </mutable>

 </header>

 <body>

 <ReturnCode authenticate="true">000000</ReturnCode>

 </body>

</ebicsKeyManagementResponse>

Diagram 21: EBICS response for administrative order type INI

 Transmission of the following data in the HIA request (analogous to INI, see

example in Diagram 22)

- Host ID of the EBICS bank computer system

(ebicsUnsecuredRequest/header/static/HostId)

- Subscribers (ebicsUnsecuredRequest/header/static/PartnerID,

ebicsUnsecuredRequest/header/static/UserID) whose public

identification and authentication key as well as public encryption key are to be

sent to the financial institution

- (Optional) technical subscribers

(ebicsUnsecuredRequest/header/static/PartnerID,

ebicsUnsecuredRequest/header/static/SystemID)

SystemID can be contained in the message if the customer system is a multi-

user system. Since HIA requests do not contain an identification and

authentication signature and the order data is unencrypted, declaration of

SystemID is optional.

- (Optional) information on the customer product

(ebicsUnsecuredRequest/header/static/Product)

- Administrative Order

type(ebicsUnsecuredRequest/header/static/OrderDetails/AdminOr

derType) set to “HIA”

- Security medium for the subscriber’s bank-technical

key(ebicsUnsecuredRequest/header/static/SecurityMedium) set to

“0000”.

The security medium for the subscriber’s bank-technical key is set to “0000”

since HIA orders neither transmit bank-technical keys nor contain ES’s.

- Order data (ebicsUnsecuredRequest/body/DataTransfer/OrderData).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsUnsecuredRequest

 xmlns=" urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt_request_H005.xsd"

 Version="H005" Revision="1">

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 61

 Status: Final Version 3.0

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 <PartnerID>CUSTM001</PartnerID>

 <UserID>USR100</UserID>

 <OrderDetails>

 <AdminOrderType>HIA</AdminOrderType>

 </OrderDetails>

 <SecurityMedium>0000</SecurityMedium>

 </static>

 <mutable/>

 </header>

 <body>

 <DataTransfer>

 <!-- XML instance document using root element HIARequestOrderData in accordance

with ebics_orders_H005.xsd, compressed and base64 encoded -->

 <OrderData>

 …

 </OrderData>

 </DataTransfer>

 </body>

</ebicsUnsecuredRequest>

Diagram 22: EBICS request for administrative order type HIA

 Transmission of the following data in the HIA response (analogous to INI, see
example Diagram 23):

- Bank-technical return code

(ebicsKeyManagementResponse/body/ReturnCode)

- Order number (ebicsKeyManagementResponse/header/mutable/OrderID)

This number is assigned by the bank server automatically.

- Technical return code

(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text

(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Optional) time stamp for the last updating of the bank parameters

(ebicsKeyManagementResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsKeyManagementResponse

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt_response_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static/>

 <mutable>

 <OrderID>A101</OrderID>

 <ReturnCode>000000</ReturnCode>

 <ReportText>[EBICS_OK] OK</ReportText>

 </mutable>

 </header>

 <body>

 <ReturnCode authenticate="true">000000</ReturnCode>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 62

 Status: Final Version 3.0

 </body>

</ebicsKeyManagementResponse>

Diagram 23: EBICS response for administrative order type HIA

4.4.1.3 Initialisation via H3K

If the bank-technical (authorisation) key is based on a self-signed certificate or an

RSA key without certificate, the public keys of the subscriber/user are still sent to the

bank by the administrative order types INI and HIA.

In order to guarantee the authenticity of the subscriber’s (user’s) public keys, it must

be ensured that the bank receives the public bank keys via a second, independent

communication path (initialisation letter for INI and for HIA, respectively). The bank

first compares the keys having received via different communication paths before

approving them.

When using CA-issued certificates the process for H3K is now the following:

1) The certificate for the bank-technical signature (ES) must be issued by a CA.
In this case, a letter is not necessary for the initialisation of this key.
However, the certificates for encryption as well as identification and
authentication can be self-signed certificates as well as certificates issued by a
CA.

2) As to the upload of the public keys for encryption and
authentication, these can be signed by an ES. A letter for the initialisation of
these keys is not necessary.

3) The necessary checks on the bank’s side (before applying the
keys for the first time) are:

a. Does an agreement for the use of the CA-issued certificate exist?
b. Are the administration steps for the customer/user finalised at the

EBICS server and is the user known at the EBICS server?
c. Is the certificate valid?

4) Taking into consideration 1) to 3), a new order type H3K can be
defined:

a. It combines INI and HIA (transport of three public keys, all keys
base on certificates); for the ES key, the certificate must be issued by a
CA.

b. It already contains an ES (via certificate issued by a CA)

This concept requires a high level of authenticity for the certificates used in this H3K

process (which serve as ES keys) and also for the Certification Authority (CA) which

issues these certificates:

 Issuing of the certificate:
o Strong identification requirements for the identification (regarding the

person and the organisation requesting the certificate)
o All data in the certificate have been thoroughly validated by a

registration authorithy.
 Naming rules:

o For the name in the certificate (SubjectName) there must be a fix schema,
which allows a unique (automatic) assignment of the natural person to the
company.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 63

 Status: Final Version 3.0

 Cryptographic requirements:
o E.g. length of the keys

 Validation requirements:
o Actuality and availability of revocation list

For the electronic initialisation (without INI letter) of new EBICS users with the

administrative order type H3K the usage of CA-issued certificates is mandatory.

When the certificate is not issued by the bank itself, a necessary prerequisite for the

electronic initialisation is that the new EBICS user has notified his certificate for the ES

including his unique subject name/CA name and the relevant CA root certificate to his

bank. The new EBICS user must use his certificate for the ES to notify the certificates

for authentication and encryption to his bank.

The requirements that have to be fulfilled in the certificate policy are agreed bilaterally

between customer and bank. The interoperability of different trust domains can be

achieved only, if appropriate technical, organisational and legal requirements are

defined. These requirements are not addressed in the EBICS specification as they are

not relevant for the communication standard itself.

In the schema file ebics_orders_H005.xsd, the element group H3KRequestOrderData

contains three certificates. In the schema file ebics_keymgmt_request_H005 the

structure ebics:UnsignedRequest contains H3KRequestOrderData

(compressed/base-64 encoded) and a signature.

In the schema file ebics_ types_H005.xsd the type (needed for sending a X509

Certificate) SignatureCertificateInfoType is defined.

AuthenticationCertificateInfoType and EncryptionInfoType are

extensions of this type and each of these types is used in H3KOrderData.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 64

 Status: Final Version 3.0

Diagram 24: Definition of the XML schema element H3KRequestOrderData for H3K
order data

When initialising a user, the check process on the bank’s side is as follows:

1- Check the structure of H3KRequestOrderData and extract the certificate for

authorisation (ES).

2- Check if this certificate was delivered by a valid Certificate Authority (CA).

3- Check if the signature in SignatureData corresponds to the public ES key in

H3KRequestOrderData.

4- Check if the information in the certificate (ebicsUnsignedRequest  body 

DataTransfer) matches the previously declared information on the client.

Note: The Bank is free to choose the means and the kind of information necessary for
the match. For example, it can be declared in a contract or by a process of uploading
certificates published on the bank’s web site.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 65

 Status: Final Version 3.0

a. If it matches, the server returns EBICS_OK (code 000000). The state of the user
is automatically switched to ‘Ready’. The user doesn’t need to send initialisation
letters (or rather no other process of validation is necessary)

b. If the server is unable to match the certificate (ES key) with the previously
declared information, the server sends a reject response and the H3KRequest is
aborted. The server returns EBICS_CERTIFICATES_VALIDATION_ERROR
(code 091219)
The state of the user remains the same (“New”). The user has two possibilities
to go on:

i. Process a H3K request again with a correct certificate (for the ES) issued
by a CA

ii. Or process INI and HIA for initialisation
(INI/HIA is especially usable as a backup process)

The signing certificate (ES) must be valid (and, above all, not expired). Otherwise the
customer has to update/ declare the new certificate (issued by a CA).

Furthermore, all error codes related to the key management can be returned in the H3K
process.

4.4.2 Download of the financial institution’s public keys

4.4.2.1 General description

The subscriber downloads all public keys from the financial institution by means of a

specially-provided administrative order type (HPB). Download of the public bank keys

necessitates the subscriber state “Ready”, only then can the processes be established

that the subscriber wishes to implement for the identification and authentication

signature, bank-technical signature and encryption.

Processing of HPB merely requires a single EBICS request / response pair. The EBICS

request of HPB contains the subscriber’s identification and authentication signature

itself, or that belonging to a technical subscriber of the same customer, via the control

data.

Diagram 25 represents the processing at the bank’s end that takes place on receipt of

an HPB request. The replay test takes place in the same way as with the bank-technical

order types (see Chapter 11.4). Thus HPB returns the technical error

EBICS_TX_MESSAGE_REPLAY when the HPB request is a recovered message. In

the same way, in the case of bank-technical order types, verification of the

customer/subscriber ID, the subscriber state and the identification and authentication

signature takes place within the process step “Verifying authenticity of the EBICS

request” (see Chapter 5.5.1.2.1, Diagram 42).

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 66

 Status: Final Version 3.0

This can produce the following error codes:

 EBICS_AUTHENTICATION_FAILED

This technical error occurs when the subscriber’s (or the technical subscriber’s)

identification and authentication signature could not be verified successfully

 EBICS_USER_UNKNOWN

This technical error occurs when the technical user’s identification and authentication

signature could be successfully verified but the (non-technical) subscriber is unknown to

the financial institution

 EBICS_INVALID_USER_STATE

This technical error occurs when the technical user’s identification and authentication

signature could be successfully verified and the (non-technical) subscriber is known to

the financial institution but does not have the state “Ready”.

After successful processing of the “Message authenticity verification”, the actual

processing of the HPB order does not produce any further specific technical or bank-

technical errors.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 67

 Status: Final Version 3.0

Supply of the requested
HPB order data:

credit institute's public keys

HPB response creation

Sending HPB response

Receiving HPB request

Replay Test

[RC = 0]

RCT = EBICS_MESSAGE_REPLAY

RCF = 0

[RC ≠ 0]

Authentication check of the
EBICS request

RCT = 0

RCF = 0

[RCT = 0 und RCF = 0]

else

Diagram 25: Processing of an HPB request at the bank’s end

The following applies in the case of the EBICS response:

 it does not contain an identification and authentication signature, since the financial
institution’s public identification and authentication key is being transmitted for the first
time in this response. This financial institution’s public identification and authentication
key cannot be used by the subscriber to verify the identification and authentication
signature since its authenticity has not yet been ascertained.

 it does not contain a bank-technical electronic order data signature, i.e. the public bank
key, since the financial institution’s bank-technical key is being transmitted for the first
time in this response. This public bank-technical key cannot be used by the subscriber
to verify the bank-technical ES since its authenticity has not yet been ascertained.

 it contains the order data, i.e. the public bank key, in encrypted format since the
subscriber’s public encryption key has already been activated by the financial institution.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 68

 Status: Final Version 3.0

The subscriber has all necessary public bank keys after successful processing of HPB,

although they must verify them before they are used: as shown in Diagram 14 the state

of these keys at the subscriber’s end is set to “New”. When they are set to the state

“New”, bank keys may not be used for communication via EBICS since their authenticity

is not ensured.

In order to guarantee the authenticity of the bank keys, the financial institution must

ensure that the subscriber receives the public bank keys and/or the hash-values via a

second, independent, communication channel (e.g. via the financial institution’s

website). The subscriber is responsible for verification of the bank keys. The process for

verification of the bank keys is not a part of this standard. If the bank provides

certificates issued by a CA, the client has to check the validity of the certificates (for

annotation, please refer to the Common Implementation Guide). It is dependent on the

implementation of the EBICS client systems that ensure that subscribers only use the

public keys after they have been successfully verified.

After successful verification, the state of the public bank keys at the subscriber’s end

changes from “New” to “Activated”. This state change is also shown in Diagram 14 Only

those bank keys that have the state “Activated” may be used for communication via

EBICS.

In EBICS Version “H005” the ES of the financial institutions is only planned (see

Chapter 3.5.2). Diagram 14 takes into account the state of the bank’s public bank-

technical key at the subscriber’s end in preparation for future EBICS versions.

4.4.2.2 Description of the EBICS messages

4.4.2.2.1 Format of the order data

The order data for HPB is an instance document that conforms with

ebics_orders_H005.xsd and comprises the top-level element

HPBResponseOrderData. HPBResponseOrderData is defined as follows via the

XML schema:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 69

 Status: Final Version 3.0

Diagram 26: Definition of the XML schema element HPBRequestOrderData for HPB

order data

In Version “H005” of the EBICS protocol the ES of the financial institutions is only

planned (see Chapter 3.5.2). The element SignaturePubKeyInfo is defined in

preparation for future versions with maximum frequency (maxOccurs) being equal to 0.

The order data is compressed, encrypted and base64-coded, and embedded into the

corresponding HPB response.

4.4.2.2.2 Description and example messages

This chapter describes the EBICS messages for the administrative order type HPB.

HPB requests are instance documents that conform with

ebics_keymgmt_request_H005.xsd with the top-level element

ebicsNoPubKeyDigestsRequest. On the other hand, HPB responses are instance

documents that conform with ebics_keymgmt_response_H005.xsd with the top-level

element ebicsKeyManagementResponse.

The data that is a component of these messages is listed here. The corresponding XML

elements are given in brackets in XPath notation. The following conventions apply:

- Data that is fundamentally optional is marked “(optional)”.

- Data that may only be missing under certain conditions is instead marked

“(conditional)”

- Optional XML elements of the EBICS message that are missing in the description

may not be present in the EBICS message

- Optional XML elements in the EBICS messages that appear in the description without

the designation “(optional)” or “(conditional)” must always be placed in accordance

with the description.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 70

 Status: Final Version 3.0

This description is supplemented with an example of an EBICS request / response pair

for the administrative order type HPB.

 Transmission of the following data in the HPB request (see example in Diagram 27):

- Host ID of the EBCIS bank computer system

(ebicsNoPubKeyDigestsRequest/header/static/HostId)

- Combination of Nonce and Timestamp, necessary to avoid replaying old EBICS

messages (ebicsNoPubKeyDigestsRequest/header/static/Nonce,

ebics/header/static/Timestamp)

- Subscribers (ebicsNoPubKeyDigestsRequest/header/static/PartnerID,

ebics/header/static/UserID) who initiates the HPB request

- (Conditional) technical subscribers

(ebicsNoPubKeyDigestsRequest/header/static/PartnerID,

ebics/header/static/SystemID)

SystemID must be present if the customer system is a multi-user system. The

technical subscriber is responsible for the generation of the EBICS requests

(including the identification and authentication signatures) that belong to orders that

are submitted or bank-technically signed by the subscriber.

- (Optional) information on the customer product

(ebicsNoPubKeyDigestsRequest/header/static/Product)

- Administrative Order type

(ebicsNoPubKeyDigestsRequest/header/static/OrderDetails/AdminO

rderType) set to “HPB”

- Security medium for the subscriber’s bank-technical

key(ebicsNoPubKeyDigestsRequest/header/static/SecurityMedium)

set to “0000”.

The security medium for the subscriber’s bank-technical key is set to “0000” since

HPB orders neither require ES’s nor transmit bank-technical subscriber keys.

- Identification and authentication signature of the technical subscriber, if such is

available, otherwise the identification and authentication signature of the subscriber

themselves (ebicsNoPubKeyDigestsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the

EBICS request whose attribute value for @authenticate is equal to “true”. The

definition of the XML schema “ebics_keymgmt_request_H005.xsd“ guarantees that

the value of the attribute @authenticate is equal to “true” for precisely those

elements that must be signed

<?xml version="1.0" encoding="UTF-8"?>

<ebicsNoPubKeyDigestsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 71

 Status: Final Version 3.0

 <Nonce>234AB2340FD2C23035764578FF3091FA</Nonce>

 <Timestamp>2005-01-30T15:40:45.123Z</Timestamp>

 <PartnerID>CUSTM001</PartnerID>

 <UserID>USR100</UserID>

 <OrderDetails>

 <AdminOrderType>HPB</AdminOrderType>

 </OrderDetails>

 <SecurityMedium>0000</SecurityMedium>

 </static>

 <mutable/>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmldenc#sha256"/>

 <ds:DigestValue>…here hash value authentication...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>…here signature value authentication...</ds:SignatureValue>

 </AuthSignature>

 <body/>

</ebicsNoPubKeyDigestsRequest>

Diagram 27: EBICS request for administrative order type HPB

 Transmission of the following data in the EBICS response for HPB (see example in

Diagram 28):

- Bank-technical return code (ebicsKeyManagementResponse/body/ReturnCode)

- Technical return code

(ebicsKeyManagementResponse/header/mutable/ReturnCode)

- Technical report text

(ebicsKeyManagementResponse/header/mutable/ReportText)

- (Conditional) information for encryption of the order data and possibly the ES of the

order data

(ebicsKeyManagementResponse/body/DataTransfer/DataEncryptionIn

fo), if no errors of a technical or bank-technical nature have occurred.

In particular, DataEncryptionInfo also contains the asymmetrically-encrypted

transaction key

(ebicsKeyManagementResponse/body/DataTransfer/DataEncryptionIn

fo/TransactionKey)

- (Conditional) the order data

(ebicsKeyManagementResponse/body/DataTransfer/OrderData), if no

errors of a technical or bank-technical nature have occurred

- (Optional) time stamp for the last updating of the bank parameters

(ebicsKeyManagementResponse/body/TimestampBankParameter).

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 72

 Status: Final Version 3.0

<?xml version="1.0" encoding="UTF-8"?>

<ebicsKeyManagementResponse

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_keymgmt_response_H005.xsd”

 Version="H005" Revision="1">

 <header authenticate="true">

 <static/>

 <mutable>

 <ReturnCode>000000</ReturnCode>

 <ReportText>[EBICS_OK] OK</ReportText>

 </mutable>

 </header>

 <body>

 <DataTransfer>

 <DataEncryptionInfo authenticate="true">

 <EncryptionPubKeyDigest Version="E002"

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">..here hash value of public key for

encryption ..</EncryptionPubKeyDigest>

 <!-- asymmetricly encrypted transaction key -->

 <TransactionKey>…</TransactionKey>

 </DataEncryptionInfo>

 <!-- XML instance document using root element HPBResponseOrderData in accordance

with ebics_orders_H005.xsd, compressed and base64 encoded -->

 <OrderData>

…

 </OrderData>

 </DataTransfer>

 <ReturnCode authenticate="true">000000</ReturnCode>

 </body>

</ebicsKeyManagementResponse>

Diagram 28: EBICS response for administrative order type HPB

4.5 Suspending a subscriber

4.5.1 Alternatives

If there is any suspicion that subscriber keys have been compromised, the subscriber

MUST suspend their access authorisation to all bank systems that use the compromised

key/s.

Subscribers that wish to suspend their remote access data transmission to a bank

system can do this in two ways:

 The SPR transaction is a standard upload transaction transmitting the ES file exclusively

containing the signature of the subscriber who is to be suspended with the help of a

dummy file. The dummy file contains one blank character only and is not being

transmitted. The corresponding EBICS request not only has to contain this signature but

also an identification and authentication signature. The identification and authentication

signature may also be provided by a technical subscriber.

The SPR order does not comprise any additional order data and hence does not

contain any order file either.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 73

 Status: Final Version 3.0

 In addition, the subscriber has the possibility of instigating the suspension via a second

communication channel, e.g. by telephone via a specific contact of the financial

institution. If a subscriber key gets lost or damaged, only this alternative is selectable.

After successful execution of the suspension, the subscriber has the state “Suspended”

and renewed initialisation of the subscriber is required.

4.5.2 Revoking a subscriber via SPR

SPR is a regular upload transaction. See Chapter 5.5 for a detailed description of the

flow of the transaction (including its behaviour in cases of errors). Subsequently, only

differences and supplements are given.

For SPR only an ES file is transmitted.. Processing is already being executed during the

phase of initialisation, i.e. the bank system provides no transaction ID with the

response.

The bank system has to ensure that the SPR request contains the identification and

authentication signature of the subscriber who is to be revoked, or of the technical

subscriber, respectively.

 Verification of the customer/subscriber ID, the subscriber state and the identification

and authentication signature takes place within the process step “Verifying authenticity

of the EBICS request” (see Chapter 5.5.1.2.1, Diagram 42).

The ES file has to contain a valid electronic signature of the subscriber who is to be

suspended by way of a file containing one blank character only.

The subsequent actual synchronous suspension of the subscriber does not return any

further specific technical or bank-technical errors.

4.6 Key changes

4.6.1 Changing the subscriber keys

With EBICS 2.3 and earlier versions, keys had to be changed by means of the

administrative order types PUB (change of the bank-technical key) and HCA (change of

the identification and authentication key as well as the encryption key). These changes

could be executed independently. In order to simplify the key management at the

customer's as well as the bank's end, with EBICS 2.4 the administrative order type HCS

is introduced allowing all three keys of a single transaction to be modified. Therefore,

order type HCS comprises PUB and HCA.

HCS – as well as PUB and HCA – require the bank-technical ES of the respective

subscriber in the ES version supported in each case (e.g. A005, A006), but not the

additional dispatch of initialisation letters. For reasons of compatibility, the

administrative order types PUB and HCA can still be used as alternatives to HCS.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 74

 Status: Final Version 3.0

Depending on their state, the subscriber has two possibilities for updating their public

subscriber keys on the bank system:

 With the state “Suspended”, subscriber initialisation MUST fundamentally be carried out so

that bank-technical orders can be transmitted via EBICS. Hence suspension of access

authorisation followed by subscriber initialisation is an alternative for activation of

subscriber keys. Subscriber initialisation takes place using the administrative order

types INI and HIA, and requires the additional sending of initialisation letters. The

subscriber initialisation process is described in Chapter 4.4.1. Information on the subject

of suspension of a subscriber’s access authorisation can be found in Chapter 4.5.

 When they have the state “Ready”, subscribers can update their public subscriber keys

using the two administrative order types PUB, HCS and HCA without having to go the

long way round with subscriber initialisation. In each case, PUB, HCS and HCA require

the ES of the respective subscriber but not the additional dispatch of initialisation letters.

On the one hand, this simplifies the key change process but on the other hand it

removes the possibility of using initialisation letters to document a subscriber’s key

history. It is the responsibility of the financial institution to document the key change via

PUB, HCS and HCA so that it remains verifiable.

The subject of this chapter is the detailed description of key changing via PUB, HCS

and HCA.

4.6.1.1 General description

Subscribers with the state “Ready” can update their public subscriber keys by using one

of the following administrative order types:

 PUB: update the public bank-technical key

 HCA: update the public identification and authentication key and the public encryption
key

 HCS: update the public bank-technical subscriber key, the public identification and
authentication key and the public encryption key

PUB, HCS and HCA are regular upload transactions whose sequence (including

behaviour in error situations) is described in detail in Chapter 5.5. Contained therein is

Diagram 47 which describes the sequence of EBICS request handling by the bank

during the data transfer phase of an upload request. A part of this procedure is the

process step “Verifying and processing of the order”. This step returns the following

error codes for the administrative order type PUB:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_SIGNATURE

This business related error occurs when the order data contains an inadmissible version

of the bank-technical signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_SIGNATURE

This business related error occurs when the order data contains a bank-technical key of

inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT

This business related error occurs when the order data does not correspond with the

designated format (see Chapter 4.4.1.2.5.1)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 75

 Status: Final Version 3.0

 EBICS_USER_UNKNOWN

This technical error occurs when the subscriber that is a component of the PUB order

data is not a registered subscriber

 EBICS_UNKNOWN_USER_STATE

This technical error occurs when the subscriber that is a component of the PUB order

data does not have the state “Ready”

 EBICS_SIGNATURE_VERIFICATION_FAILED

This business related error occurs when the ES of the subscriber in question could not

be successfully verified.

 For Return codes relating to CA-issued certificates, refer to Annex 1

For HCA, the process step “Examination and processing of the order” returns the

following error codes:

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_ENCRYPTION

This business related error occurs when the order data contains an inadmissible version

of the encryption process

 EBICS_KEYMGMT_UNSUPPORTED_VERSION_AUTHENTICATION

This business related error occurs when the order data contains an inadmissible version

of the identification and authentication signature process

 EBICS_KEYMGMT_KEYLENGTH_ERROR_ENCRYPTION

This business related error occurs when the order data contains an encryption key of

inadmissible length

 EBICS_KEYMGMT_KEYLENGTH_ERROR_AUTHENTICATION

This business related error occurs when the order data contains an identification and

authentication key of inadmissible length

 EBICS_INVALID_ORDER_DATA_FORMAT

This business related error occurs when the order data does not correspond with the

designated format (see Chapter 4.4.1.2.5.1)

 EBICS_USER_UNKNOWN

This technical error occurs when the subscriber that is a component of the HCA order

data is not a registered subscriber

 EBICS_UNKNOWN_USER_STATE

This technical error occurs when the subscriber that is a component of the HCA order

data does not have the state “Ready”

 EBICS_SIGNATURE_VERIFICATION_FAILED

This business related error occurs when the ES of the subscriber in question could not

be successfully verified.

 For Return codes relating to CA-issued certificates, refer to Annex 1

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 76

 Status: Final Version 3.0

HCS being a combination of PUB and HCA, all error codes in process step "Verifying

and processing of the order" listed under PUB and HCA can be reported.

Either PUB and HCA or HCS must be submitted by the subscriber whose keys are to be

updated. Each administrative order type PUB, HCS, and HCA require precisely one ES

that must be supplied by the subscriber whose keys are to be updated. The signature

class of this ES is irrelevant.

PUB-request (public EU-key_new)

PUB-Response

User system Bank system

User‘s key pairs currently used with EBICS:

private/public authentication key_old

private/ public encryption key_old

private/ public EU-key_old

User‘s new key pairs for EBICS:

private/ public EU-key_new

User‘s released public keys for EBICS:

private/public authentication key_old

private/ public encryption key_old

private/ public EU-key_old

User[Ready]

User‘s key pairs currently used with EBICS:

private/public authentication key_old

private/ public encryption key_old

private/ public EU-key_new

User‘s released public keys for EBICS:

private/public authentication key_old

private/ public encryption key_old

private/ public EU-key_new

User[Ready]

Diagram 29: Changing the bank-technical subscriber key via PUB

Diagram 29 represents the state of the public subscriber keys and the subscriber before

and after processing of PUB. The following applies to the processing of PUB:

 The order data, i.e. the subscriber’s new public bank-technical key, is compressed,

encrypted and finally base64-coded, and is embedded into the EBICS messages.

 The order data is signed via ES by the subscriber whose public bank-technical key is to

be updated. The subscriber’s old bank-technical key (that is activated at this point) is

used for this ES.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 77

 Status: Final Version 3.0

HCA-request (public authentication key_new,

public encryption key_new)

HCA-response

User system Bank system

User‘s key pairs currently used with EBICS:

private/public authentication key_old

private/ public encryption key_old

private/ public EU-key_old

User‘s new key pairs for EBICS:

private/public authentication key_new

private/ public encryption key_new

User‘s released public keys for EBICS:

private/public authentication key_old

private/ public encryption key_old

private/ public EU-key_old

User[Ready]

User‘s key pairs currently used with EBICS:

private/public authentication key_new

private/ public encryption key_new

private/ public EU-key_old

User‘s released public keys for EBICS:

private/public authentication key_new

private/ public encryption key_new

private/ public EU-key_old

User[Ready]

Diagram 30: Changing the authentication key and encryption key via HCA

Diagram 30 shows the state of the subscriber keys and the subscriber before and after

the processing of HCA. In addition, the following applies to the processing of HCA:

 The order data, i.e. the subscriber’s new public identification and authentication key and

new public encryption key, is compressed, encrypted and finally base64-coded, and is

embedded into the EBICS messages.

 HCA requests contain the identification and authentication signature of the affected

subscriber or a technical subscriber. The identification and authentication signature of

the affected subscriber is generated with the old identification and authentication

signature (that is activated at this point). The financial institution’s EBICS responses

contain the financial institution’s identification and authentication signature.

By using HCS all keys are changed. The administrative order type HCS can be

regarded as an alternative to PUB and HCA which allow the keys for the bank-technical

electronic signature (PUB) and for the identification and authentication signature and

encryption (HCA) only to be changed separately.

Therefore, the process looks like follows:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 78

 Status: Final Version 3.0

HCS-request (public authentication key_new,

public encryption key_new, EU-key_new)

HCS-response

User system Bank system

User‘s key pairs currently used with EBICS:

private/public authentication key_old

private/ public encryption key_old

private/ public EU-key_old

User‘s new key pairs for EBICS:

private/public authentication key_new

private/ public encryption key_new

User‘s released public keys for EBICS:

private/public authentication key_old

private/ public encryption key_old

private/ public EU-key_old

User[Ready]

User‘s key pairs currently used with EBICS:

private/public authentication key_new

private/ public encryption key_new

private/ public EU-key_new

User‘s released public keys for EBICS:

private/public authentication key_new

private/ public encryption key_new

private/ public EU-key_new

User[Ready]

private/ public EU-key.new

Diagram 31: Changing the bank-technical subscriber key, the authentication key, and
encryption key via HCS

4.6.1.2 Format of the order data

PUB and HCS support the data structure for INI files (or the public key file, see Chapter

Fehler! Verweisquelle konnte nicht gefunden werden.).

When using the ES in structured form (from signature process A005/A006 on), the order

data for PUB is an instance document that conforms with ebics_signature.xsd and

comprises the top-level element SignaturePubKeyOrderData (in compliance with

INI, XML scheme representation see in chapter 4.4.1.2.5)

SignaturePubKeyOrderData is defined as follows via the XML schema:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 79

 Status: Final Version 3.0

Diagram 32: Definition of the XML schema element SignaturePubKeyOrderData for
PUB order data (identical to INI, see own chapter)

The order data for HCA is an instance document that conforms with

ebics_orders_H005.xsd and comprises the top-level element HCARequestOrderData.

HCARequestOrderData is defined as follows via the XML schema:

Diagram 33: Definition of the XML schema element HCARequestOrderData for HCA
order data

The order data for HCS is an instance document that conforms with

ebics_orders_H005.xsd and comprises the top-level element HCSRequestOrderData.

HCSRequestOrderData is defined as follows via the XML schema:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 80

 Status: Final Version 3.0

Diagram 34: Definition of the XML schema element HCSRequestOrderData for HCS
order data

The order data for PUB, HCS, and HCA are compressed, encrypted and base64-coded,

and embedded into the corresponding EBICS request.

4.6.2 Changing the bank keys

The process for updating bank keys is not a part of this standard. The duration of

validity of the bank keys is not part of the EBICS interface. From the point of view of the

EBICS protocol, one set of currently-valid bank keys exist at any time and for any

admissible combination of processes for the identification and authentication signature,

encryption and the ES. In Version H005, this consists of precisely the following keys:

 Private/public encryption key for process E002

 Private/public identification and authentication key for process X002

 Private/public bank-technical key for process A005 or A006.

In EBICS there are no transition periods where more than one key is valid for the same

process. Keys changed at the bank’s end are immediately valid in EBICS.

If the bank provides new keys the subscriber is responsible for download of the

respective current bank keys via HPB. HPB always delivers the current keys (key for

identification and authentication as well as key for encryption) and these are signed by

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 81

 Status: Final Version 3.0

the identification and authentication signature of the bank side. However for this

signature the former key for identification and authentication is used. For this procedure

“signature value” in the x.509 structure contains the identification and authentication

signature (built up with the former current bank key) and the 1 to n occurences of

“public key” contain the current public keys.

When processing of HPB for the first time (initialisation of the subscriber) the verification

of this signature is not possible as the subscriber doesn’t hold former keys to verify the

signature. The state of the bank keys at the subscriber’s end is equal to “New” in this

moment. The bank keys may not (yet) be used for communication via EBICS while they

have this state. The financial institution MUST make the new keys accessible by means

of a second, independent, communication channel. As with initial download of the bank

keys, the subscriber MUST carry out a comparison of the keys and/or its hash-values

received via the different communication channels immediately after initialisation. After

successful verification of the bank keys, their state is “activated” at the subscriber’s

side. When they have the state “activated”, the bank keys can be used for

communication via EBICS.”

When reprocessing HPB (further time for the subscriber due to the update of bank keys)
the identification and authentication signature can be verified as the subscriber’s end
holds the former keys.
Case 1:
When the verification is successful the state of the bank keys remains “activated”. The
bank keys will be exchanged in the client system.
Case 2:

When the verification is not successful the subscriber is informed about this failure and

the state of the bank keys is reset to “new”. As in the initialisation case he MUST carry

out a comparison of the keys and/or its hash-values received via the different

communication channels.

In order to ensure that the subscriber has the current bank keys, the sequence of an

EBICS transaction (with the exception of INI, HIA, HPB) in the first EBICS request

provides for the transmission of the hash value of the financial institution’s public keys

(XML structure ebicsRequest/header/static/BankPubKeyDigests) with which

the subscriber has been provided. The bank system verifies whether the these keys are

up-to-date and returns the result of the verification to the subscriber. If one of these is

no longer current, the transaction is terminated with the technical return code

EBICS_BANK_PUBKEY_UPDATE_REQUIRED. The subscriber must then download

the bank keys with HPB.

In Version “H005” of the EBICS protocol the ES of the financial institutions is only

planned (see Chapter 3.5.2). In preparation for future versions of EBICS, the XML

structure BankPubKeyDigests contains the hash value of the public bank-technical

key with the maximum frequency being equal to 0. Further details on verifying the hash

value can be found in Chapter 5.5.1.2.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 82

 Status: Final Version 3.0

4.7 Change-over to longer key lengths

The key lengths must continually be increased to guarantee the security of the RSA

process. See the regular publications of the “Übersicht über geeignete Algorithmen”

from the Regulierungsbehörde für Telekommunikation und Post.

The subject of this chapter is the transition to keys of greater length in EBICS.

In version “H005” Bank-technical keys of a minimum length of 2048 are to be used.

In Version “H005”, EBICS sets a minimum length of 2048 bits (= 2 Kbit) and a maximum

length of 16 Kbit for identification and authentication keys and encryption keys. The

minimum length must be changed when keys of this length are no longer to be used for

security reasons. The maximum length must be changed when keys that are longer

than this maximum length are allowed to be supported.

The order data formats of the administrative order types HIA, HPB, HCA, and HCS

permit key lengths of any size. This means that these order data formats will not require

adaptation after the key lengths have been increased.

New public identification and authentication keys or encryption keys of greater length

will be transmitted to the bank systems via HIA, HCS, or HCA in exactly the same way

as new identification and authentication keys of consistent length.

In the same way, the financial institution’s new public keys will be downloaded via HPB

irrespective of whether the length of the financial institution’s identification and

authentication key or encryption key has changed.

4.8 Summary

The following table summarises the most important features of the (administrative) key

management order types:

Admi
n.
Order
type

Order data format Identification and
authentication
signature
subscriber /
financial
institution

Order
data ES

INI
INI file (in accordance with
Chapter 14)

no/no no

HIA

ebics:

HIARequestOrder»

Data

no/no no

HPB

ebics:

HPBRequestOrder»

Data

yes/no no

PUB see INI yes/yes yes

HCA ebics: yes/yes yes

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 83

 Status: Final Version 3.0

HCARequestOrder»

Data

HCS

ebics:

HCSRequestOrder»

Data

yes/yes yes

H3K

ebics:

H3KRequestOrder»

Data

no/no
yes
(certificat
e)

SPR
Sole key management order
which only contains an ES

yes/yes yes

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 84

 Status: Final Version 3.0

5 EBICS transactions

The descriptions and stipulations in this chapter apply to all business transactions (s

identified by BTF) and all administrative orders with the exception of the following

administrative key management orders : INI, HIA, HPB, PUB, SPR, HCA, H3K and

HCS.

5.1 General provisions

5.1.1 EBICS transactions

EBICS transactions serve for the transmission of orders to the bank-technical target

system. Corresponding to the subdivision of orders into transmit and download orders,

EBICS differentiates between upload and download transactions: Upload transactions

transmit bank-technical order data and/or bank-technical signatures to the bank-

technical target system; conversely, with a download transaction bank-technical order

data and/or bank-technical signatures are downloaded from the bank-technical target

system.

5.1.2 Transaction phases and transaction steps

Each EBICS transaction passes through different transaction phases. The phases of an

upload transaction are initialisation and data transfer, the phases of a download

transaction are initialisation, data transfer and finally acknowledgement. A transaction

phase can comprise one or more connected transaction steps, wherein a transaction

step is deemed to denote a pair comprising an EBICS request and an associated

EBICS response. In this way, initialisation comprises the first initialisation step, but on

the other hand data transfer can extend over several transaction steps, in each of which

one order data segment is transmitted.

EBICS transactions can comprise one single transaction step, for example when they

just transmit the bank-technical electronic signature for an order.

5.1.3 Processing of orders

5.1.3.1 Chronological dependencies between transmission and processing of upload
orders

EBICS supports the chronological decoupling of the submission of bank-technical

upload orders via EBICS from their actual processing on the back-end systems of the

financial institution. The ES’s and order data segments that are submitted within an

EBICS transaction are firstly pre-processed. This pre-processing is not a component

of EBICS, it is dependent on the implementation of the bank system, for example the

intermediate storage of the order data segments is a part thereof. After transmission of

the last order data segment the entire order data, order parameters and ES’s are firstly

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 85

 Status: Final Version 3.0

passed on to a component of the bank system that is responsible for the management

of pending orders. Realisation is dependent on the implementation of the bank

system, it is not a component of EBICS.

In contrast to the bank-technical upload orders, it is required that processing of the

upload orders of administrative order types MUST be completed before transmission of

the last EBICS response of the upload transaction. In addition to the (administrative)

key management order types, this requirement also applies to download orders of EDS

order types so that the distributed ES process can be handled as efficiently as possible

and the involved subscribers can be given the must up-to-date state of the distributed

ES’s of an order.

5.1.3.2 Chronological dependencies between transmission and processing of
download orders

The download data is a component of the financial institution’s EBICS response. The

bank system makes a further order data segment available with each EBICS

transaction step. In order to accelerate the download process, the download data can

be generated by the bank system in advance (such as e.g. in the case of account

statements) or can not be generated until required.

5.1.4 Transaction administration

Control of the development of an EBICS transaction is normally incumbent on the

customer system, the individual transaction steps of an EBICS transaction are each

initiated by the customer system. In special cases, the bank system can also control the

development of a transaction, e.g. in that it informs the customer system of a possible

recovery point in the event of a recovery.

The EBICS transactions must also be administrated in the bank system to allow the

following:

 Assignment of the individual transaction steps to a specific EBICS transaction.

 recording of the process of the EBICS transaction for administration of the transaction

states with the objective of ensuring the progress of the EBICS transaction.

 Recovery of an EBICS transaction.

This produces the following responsibilities for the bank system’s EBICS transaction

administration:

 Generation of EBICS transactions during transaction initialisation. See Chapter 5.2 for

details.

 Aborting EBICS transactions if continuation is not expedient or not possible due to the

occurrence of error situations

 Termination of EBICS transactions if it has been possible to carry out all transaction

steps successfully

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 86

 Status: Final Version 3.0

 Verifying the process of EBICS transactions to ensure their sequence in accordance with

Chapter 5.5.1.

 Supporting the process for recovering EBICS transactions in accordance with Chapter

5.5.2 and 5.6.2 if the bank system supports recovery.

5.2 Assignment of EBICS request to EBICS transaction

The first phase of every EBICS transaction is the initialisation phase. It is triggered by the

first EBICS request of the transaction, and comprises:

 Verifications, wherein the successful execution of these verifications is a necessary

prerequisite for acceptance of the order by the financial institution

 Further processing steps that are necessary for acceptance of EBICS transactions that

comprise more than one transaction step into the transaction administration system

Examples of such verifications are checks on the state and the BTF identifiers

authorisation of the subscriber that has submitted the order. The precise scope of these

verifications/process steps is described in Chapter 5.5.1.2.1 for upload transactions and in

Chapter 5.6.1.2.1 for download transactions .

If all necessary verifications have been successfully carried out and if the transaction

comprises several transaction steps, the bank system’s transaction administration

generates an EBICS transaction with a transaction ID that is unambiguous within the bank

system (details on generation of the transaction ID can be found in the Appendix (Chapter

11.6). The subscriber is notified of this via the financial institution’s reply message. The

bank system’s transaction administration permanently assigns this transaction the following

data, which is a component of the header data of the EBICS request:

 Customer ID, subscriber ID/technical subscriber ID

 Administrative Order type

 Order parameters (depend on kind of transaction which can be administrative order or a

business-related order, see 3.11)

 Order number (only allowed for administrative order types HVE and HVS)

The order number is only present if a file is transmitted to the bank relating to an order with

already existing order number (this is only valid for the transmission of an ES file with with

the administrative order types HVE or HVS) for matching files with the same order number.

Basically the order number is a component of the header data of the EBICS response (in

uploads). It is assigned by the bank server automatically.

This data is permanently assigned to the transaction and cannot be changed in the course

of the transaction.

Outside of the initialisation process, EBICS requests contain these transaction IDs for

assignment to suitable EBICS transactions. As a whole, they contain the following elements

that identify the transaction step:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 87

 Status: Final Version 3.0

 Transaction ID that is unambiguous throughout the bank system

 Transaction phase (initialisation, data transfer, acknowledgement) within the transaction

 Serial number of the data segment of bank-technical data, if in the data transfer

transaction phase.

A detailed description of the structure of EBICS requests for upload and download

transactions can be found in Chapters 5.5.1.1 and 5.6.1.1.

5.3 Preliminary verification of orders [optional]

The bank system CAN optionally support preliminary verification functionality to avoid the

possibility of subscribers transmitting large quantities of data to the bank system, wherein it

is only discovered by the bank after the transmission has taken place that the signatory of

the upload order did not have the necessary authorisation. The information as to whether a

bank system supports preliminary verification is contained in its retrievable bank

parameters (see Chapter 12.2). If preliminary verification of upload orders is supported,

determination of the scope of the preliminary verification is the responsibility of the

individual financial institution. Support of one or more of the following verifications is

possible:

 Account authorisation verification

The account authorisation verification ensures that the following condition is complied with

for each signatory:

- The signatory is authorised to provide an ES of at least type “B” for orders of the specified

BTF identifiers for each of the order party accounts in a given order.

 Limit verification

The limit verification ensures that the following condition is complied with for each signatory

:

- The signatory is authorised to provide an ES of at least type “B” for orders of the specified

BTF identifiers and to the respective amount for each of the order party accounts in a

given order.

 ES verification

The ES verification verifies the ES of the signatory of the order and checks in each case as

to whether the ES’s originate from different subscribers.

For a successful preliminary verification the subscriber requires one of the signature
classes "E", "A", or "B". If orders are submitted only (i.e. signature class "T") the preliminary
verification is not run through. The return code "EBICS SIGNATURE VERIFICATION
FAILED" is returned if signature is not valid.

If the order at hand has already been signed the return code "EBICS DUPLICATE
SIGNATURE" is returned.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 88

 Status: Final Version 3.0

Preliminary verification of an upload order is a part of the first transaction step within the

framework of the corresponding upload transaction. The results of the preliminary

verification are given in the bank-technical return code in the corresponding EBICS

response of the first transaction step. Preliminary verification takes place before

transmission of the order’s order data, based on information from the customer system

about the order data that is still outstanding. It does not replace the corresponding

verifications that are based on the actual order data after its transmission to the bank

system.

The customer system CAN further limit the scope of the preliminary verifications. The

account authorisation, limit or bank-technical ES preliminary verifications are only carried

out by the bank if the data necessary for their execution is made available by the customer

system. The preliminary verification data is transmitted in the first EBICS request of an

upload transaction via the (optional) element ebicsRequest/body/PreValidation

(see ebics_request_H005.xsd), the type definition of which is shown in Fehler!

Verweisquelle konnte nicht gefunden werden.. This type is called

PreValidationRequestType (see ebics_types_H005.xsd) and comprises a list of the

following optional elements:

 DataDigest

 This element contains the hash value of the order data that has been signed by the

order signatories via transport signature or bank-technical ES. During preliminary

verification of an order, the ES’s are verified solely on the basis of this hash value, the

correctness of which cannot be verified at the time of verification.

For the signature process used by the order signatories (and, relating to EBICS, supported

by the bank) a hash value can be set which is to be calculated by the hash function of the

respective signature process. The appropriate signature process is identified by means of

the attribute SignatureVersion. DataDigest may occur multiple times if the

signatories use different signature versions (this is the case if not every subscriber of a

customer signs using the same signature process). This is the reason why the correct

setting of the attribute SignatureVersion is so important for each DataDigest.

 AccountAuthorisation

This element contains an order party account for the given order. For this account, the

account number (AccountAuthorisation/AccountNumber) is given in German and/or

international format and the bank code (AccountAuthorisation/BankCode) is given in

German and/or international format. As an option, the account holder

(AccountAuthorisation/AccountHolder) can also be provided. This account

information is required by the account authorisation and limit verifications. In addition, the

limit verification requires specification of the total for the individual orders relating to the

given order party account. This amount is contained in the (optional) element

AccountAuthorisation/Amount. The currency of the amount is the value of optional

attribute AccountAuthorisation/Amount@Currency, if this is available. Otherwise the

currency is the value of attribute AccountAuthorisation@Currency, which contains

the currency of the account.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 89

 Status: Final Version 3.0

The individual preliminary verifications require the subscriber ID/ customer ID of each

individual signatory. These are a component of the XML type OrderSignature that is used to

represent individual ES’s. See Chapter 3.5 for further details on embedding ES’s into

EBICS messages.

5.4 Recovery of transactions [optional]

This chapter describes the basic principles of the recovery procedure that apply to both

upload and download transactions.

The EBICS recovery mechanism means that a transaction’s order data that has already

been received by the customer or bank system does not have to be re-transmitted if one of

the following error situations occurs:

 Transport error

 Processing error in the EBICS message that contains the order data:

In the case of upload transactions these are EBICS request processing errors that can

occur at the bank’s end, in the case of download transactions they are EBICS response

processing errors that occur at the customer’s / subscriber’s end. For example, errors can

occur during (intermediate) storage of order data.

Recovery is an important aspect of the protocol, since the size of the order data can

certainly reach a magnitude of several hundred megabytes.

The mechanism requires knowledge of the transaction ID of the EBICS transaction in

question, and is based on the definition of transaction recovery points:

 In the case of upload transactions, the recovery point is the last transaction step in the

transaction whose EBICS request has been successfully received by the bank system and

whose EBICS response has been successfully transmitted. The recovery point is

determined by the state of the transaction in the bank system.

 In the case of download transactions, there may be several recovery points. These are all

of the previous transaction steps in the transaction in question whose EBICS request has

been successfully received by the bank system and whose EBICS response has been

successfully transmitted.

After transport or processing errors have occurred, a recovery point can be used to

continue transactions from the transaction step that follows this recovery point in the

transaction step sequence.

All EBICS requests relating to an open transaction that do not match the state of this

transaction are evaluated by the bank system’s EBICS transaction administration as

recovery attempts.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 90

 Status: Final Version 3.0

In order to guarantee progress of the EBICS transactions, the number of possible recovery

attempts per transaction MUST be limited by a maximum value. The bank system’s

transaction administration is responsible for administration of the corresponding counter for

each transaction. Transactions whose counter exceeds the permitted limit will be

terminated by the bank system’s transaction administration. In addition, the bank system

CAN limit the number of open transactions with a positive recovery counter for each

subscriber by setting a maximum value. The counter for recovery attempts that have

already been initiated for each transaction and/or the counter for the pending transactions

in recovery mode for each subscriber and also the permitted maximum numbers are not a

part of the EBICS messages. Instead, they are a part of the processing of the EBICS

transaction administration at the bank’s end.

Analogously, the customer system’s transaction control limits the number of attempts made

to successfully carry out a particular transaction step in an EBICS transaction. In this case,

counters and permitted maximum numbers are not part of the EBICS messages but are

merely part of the processing of transaction control at the customer’s end.

Details on recovery of upload and download transactions are given in Chapters 5.5.2 and

5.6.2.

5.5 Upload transactions

5.5.1 Sequence of upload transactions

The sequence of an upload transaction is shown in Diagram 35 by means of a flow

diagram. Transmission of the order data segments takes place within a loop that is broken

off when the last order data segment has been transmitted (note partial expression “[last

data segment has been transmitted]” from the termination conditions). The sequence

clarifies that order data does not necessarily also have to be transmitted within an upload

transaction note partial expression “[AdminOrderType = HVE or HVS]” from the termination

conditions). This is the case when only a bank-technical ES relating to an existing order is

transmitted via HVE (add ES) or HVS (cancellation of order) .

Diagram 35: Error-free sequence of an upload transaction

5.5.1.1 Description of the EBICS messages

For clarification purposes, the following description of the transaction steps in a business

transaction format (BTF-)upload use example messages for the processing of the service

“sct” (SEPA credit transfer) . It refers to elements of these example messages, using XPath

notation.

The following chapters describe the messages in the individual transaction phases. The

data that is a component of these messages is listed here. Data that is fundamentally

optional is marked “(optional)”. Data that may only be missing under certain conditions is

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 91

 Status: Final Version 3.0

instead marked “(conditional)”. Optional XML elements that are missing in the description of

an EBICS message relating to a specific transaction phase may not be present in this

EBICS message. Optional XML elements that are present in the description of an EBICS

message relating to a specific transaction phase MUST always be placed correspondingly in

this EBICS message.

EBICS requests for upload transactions are (XML) instance documents that conform to

ebics_request_H005.xsd and comprise the top-level element ebicsRequest which is

declared in ebics_request_H005.xsd. EBICS responses for upload transactions are

instance documents that conform to ebics_response_H005.xsd and comprise the top-level

element ebicsResponse which is again declared in ebics_response_H005.xsd.

5.5.1.1.1 EBICS messages in transaction initialisation

 Transmission of the following data in the EBICS request (see Diagram 36):

- Host ID of the EBICS bank computer system (ebicsRequest/header/static/HostID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with the

setting “Initialisation”

- Combination of Nonce and Timestamp, necessary to avoid replaying old EBICS

messages (ebicsRequest/header/static/Nonce,

ebicsRequest/header/static/Timestamp)

- Number of data segments to be transmitted

(ebicsRequest/header/static/NumSegments)

- Subscriber (ebicsRequest/header/static/PartnerID,

ebicsRequest/header/static/UserID) that is submitting a new order or that is

providing bank-technical ES’s for an existing order.

- (Conditional) technical subscribers (ebicsRequest/header/static/PartnerID,

ebicsRequest/header/static/SystemID)

SystemID must be present if the customer system is a multi-user system. The technical

subscriber is responsible for the generation of the EBICS request (including the

identification and authentication signatures) that belong to orders that are submitted or

bank-technically signed by the subscriber.

- (Optional) information on the customer product

(ebicsRequest/header/static/Product)

- Administrative Order type

(ebicsRequest/header/static/OrderDetails/AdminOrderType)

- (Conditional) Order number

(ebicsRequest/header/static/OrderDetails/OrderID)

 OrderID is only present if a file is transmitted to the bank relating to an order with an

already existing order number (only allowed for AdminOrderType = HVE or HVS)

-

- Order parameters (ebicsRequest/header/static/OrderDetails/OrderParams);

the characteristics of the order parameters are dependent on the administrative order

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 92

 Status: Final Version 3.0

type (see also Chapter 3.11). For the upload of business transaction formats the order

parameters and usage rules are specified in detail in chapter 5.5.1.1.3

- Hash values of the financial institution’s public keys that are available to the subscriber

(ebicsRequest/header/static/BankPubKeyDigests/Authentication,

ebicsRequest/header/static/BankPubKeyDigests/Encryption,

ebicsRequest/header/static/BankPubKeyDigests/Signature).

Both the utilised hash algorithm and the version of the corresponding identification and

authentication, encryption and signature process will be specified for each of these hash

values.

The printed SHA-256 hash values of the financial institution's certificates X002 and E002

are composed by calculating the SHA2-256 hash value of the certificate in DER binary

format, and presenting the resulting byte array (32 bytes) into hexadecimal

representation (64 char) and in uppercase.In Version “H005” of the EBICS protocol the

ES of the financial institutions is only planned (see Chapter 3.5.2). The element

BankPubKeyDigests/Signature is already contained in this description in

preparation for future versions of EBICS, but in Version “H005” its maximum frequency

(maxOccurs) is set to 0.

- Security medium for the subscriber’s bank-technical

key(ebicsRequest/header/static/SecurityMedium)

- Identification and authentication signature of the technical subscriber, if such is available,

otherwise the identification and authentication signature of the subscriber themselves

(ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

request whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_request_H005.xsd“ guarantees that the value of the attribute

@authenticate is equal to “true” for precisely those elements that also need to be

signed.

- (Optional) data for preliminary verification of the order

(ebicsRequest/body/PreValidation)

- Information for encryption of the ES’s and order data

(ebicsRequest/body/DataTransfer/DataEncryptionInfo) which especially

also contains the asymmetrically-encrypted transaction key

(ebicsRequest/body/DataTransfer/DataEncryptionInfo/TransactionKey)

- ES’s of the order’s order data (ebicsRequest/body/DataTransfer/SignatureData)

SignatureData contains an instance document that conforms to

“ebics_orders_H005.xsd” and contains UserSignatureData as a top-level element. This

instance document has been compressed with ZIP, encrypted for the financial institution

and finally base64-coded before being embedded into the EBICS request (see Appendix

(Chapter 11.2.2)). Diagram 37 contains an example of such an instance document that

contains a single ES. The setting for the attribute PartnerID in the document

UserSignatureData must be identical to the submitter's customer ID in the element

ebicsRequest/header/static/PartnerID.

- The data digest of the order data

(ebicsRequest/body/DataTransfer/DataDigest)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 93

 Status: Final Version 3.0

The attribute ebicsRequest/body/DataTransfer/DataDigest

@SignatureVersion specifies the Version of the signature process used for

computation of the data digest.

- Additional order information (optional)

(ebicsRequest/body/DataTransfer/AdditionalOrderInfo)

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

xmlns="urn:org:ebics:H005"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 <Nonce>BDA2312973890654FAC9879A89794E65</Nonce>

 <Timestamp>2005-01-30T15:30:45.123Z</Timestamp>

 <PartnerID>CUSTM001</PartnerID>

 <UserID>USR100</UserID>

 <Product Language="en" InstituteID="Institute ID">Product Identifier</Product>

 <OrderDetails>

 <AdminOrderType>BTU</AdminOrderType>

 <BTUOrderParams>

 <Service>

 <ServiceName>sct</ServiceName>

 <MsgName>pain.001</MsgName>

 </Service>

 </BTUOrderParams/> </OrderDetails>

 <BankPubKeyDigests>

 <Authentication Version="X002"

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">1H/rQr2Axe9hYTV2n/tCp+3UIQQ=</Authentica

tion>

 <Encryption Version="E002"

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">2lwiueWOIER823jSoiOkjl+woeI=</Encryption

>

 </BankPubKeyDigests>

 <SecurityMedium>0000</SecurityMedium>

 <NumSegments>2</NumSegments>

 </static>

 <mutable>

 <TransactionPhase>Initialisation</TransactionPhase>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">

 </ds:SignatureMethod>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>…here hash value authentication..</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>…here signature value authentication..</ds:SignatureValue>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 94

 Status: Final Version 3.0

 </AuthSignature>

 <body>

 <PreValidation authenticate="true">

 <DataDigest SignatureVersion="A006">

MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTI=</DataDigest>

 </PreValidation>

 <DataTransfer>

 <DataEncryptionInfo authenticate="true">

 <EncryptionPubKeyDigest Version="E002"

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">..here hash value of the public bank key

for encryption..</EncryptionPubKeyDigest>

 <TransactionKey>EIGI4En6KEB6ArEzw+iq4N1wm6EptcyxXxStA…</TransactionKey>

 <HostID>EBIXHOST</HostID>

 </DataEncryptionInfo>

 <SignatureData authenticate="true">n6KEB6ArEzw+iq4N1wm6EptcyxXxStAO…</SignatureData>

 <DataDigest SignatureVersion="A006">

MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTI=</DataDigest>

 </DataTransfer>

 </body>

</ebicsRequest>

Diagram 36: EBICS request for transaction initialisation for a business transaction format
upload

<?xml version="1.0" encoding="UTF-8"?>

<UserSignatureData

xmlns="http://www.ebics.org/S002"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ebics.org/S002

http://www.ebics.org/S002/ebics_signature.xsd">

<UserSignatureData>

 <OrderSignatureData>

<SignatureVersion>A005</SignatureVersion>

<SignatureValue>EUXkQa……</SignatureValue>

<PartnerID>PARTNER1</PartnerID>

<UserID>User1</UserID>

 </OrderSignatureData>

</UserSignatureData>

Diagram 37: XML document that contains the ES’s of the signatory of the upload order

 Transmission of the following data in the EBICS response (see also example in

Diagram 38)

- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Order number (ebicsResponse/header/mutable/OrderId)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- (Conditional) Transaction ID that is unambiguous throughout the bank system

(ebicsResponse/header/static/TransactionID), if the following conditions are

met:

 No errors of a technical or bank-technical nature have occurred during transaction
initialisation

 Within the current transaction, order data segments are transmitted in further
subsequent transaction steps, i.e. the AdminOrderType is not HVE or HVS.

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase) with the

setting “Initialisation”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 95

 Status: Final Version 3.0

- Identification and authentication signature of the financial institution

(ebicsResponse/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

response whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_response_H005.xsd“ guarantees that the value of the attribute

@authenticate is equal to “true” for precisely those elements that must be signed

- (Optional) time stamp for the last updating of the bank parameters

(ebicsResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

xmlns="urn:org:ebics:H005"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:org:ebics:H005 ebics_response_H005.xsd"

Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Initialisation</TransactionPhase>

 <OrderId>OR01</OrderId>

 <ReturnCode>000000</ReturnCode>

 <ReportText>[EBICS_OK] OK</ReportText>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>…here hash value authentication..</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>…here signature value authentication..</ds:SignatureValue>

 </AuthSignature>

 <body>

 <ReturnCode authenticate="true">000000</ReturnCode>

 </body>

</ebicsResponse>

Diagram 38: EBICS response for transaction initialisation for the upload order

5.5.1.1.2 EBICS messages in the phase data transfer of a order data segment

 Transmission of the following data in the EBICS request (see example in Diagram 39):

- Host ID of the EBICS bank computer system (ebicsRequest/header/static/HostID)

Data for identification of the current transaction step:

 Transaction ID (ebicsRequest/header/static/TransactionID)

 Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with

the setting “Transfer”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 96

 Status: Final Version 3.0

 Serial number of the order data segment

(ebicsRequest/header/mutable/SegmentNumber)

The attribute ebicsRequest/header/mutable/SegmentNumber@lastSegment

specifies whether this is the last data segment.

- Identification and authentication signature of the technical subscriber, if such has been

defined for the current transaction, otherwise the identification and authentication

signature of the submitting subscriber themselves (ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

request whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_request_H005.xsd“ guarantees that the value of the attribute

@authenticate is equal to “true” for precisely those elements that also need to be

signed

- The actual order data segment (ebicsRequest/body/DataTransfer/OrderData)

(see Chapter 3.3 and Chapter 7 for details on the segmentation of order data).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 <TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Transfer</TransactionPhase>

 <SegmentNumber lastSegment="true">4</SegmentNumber>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">

 </ds:SignatureMethod>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>…here hash value authentication..</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>…here signature value authentication..</ds:SignatureValue>

 </AuthSignature>

 <body>

 <DataTransfer>

 <OrderData>RUJJQ1MtUmVxdWVzdCBm/HIgZGllINxiZXJ0…</OrderData>

 </DataTransfer>

 </body>

</ebicsRequest>

Diagram 39: EBICS request for transmission of the last order data segment of a business
transaction format order

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 97

 Status: Final Version 3.0

 Transmission of the following data in the EBICS response (see also example in Diagram

40)

Bank-technical return code (ebicsResponse/body/ReturnCode)

Order number (ebicsResponse/header/mutable/OrderId)

Technical return code (ebicsResponse/header/mutable/ReturnCode)

Technical report text (ebicsResponse/header/mutable/ReportText)

Data for identification of a transaction step:

If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this transaction

step identifies the recovery point of the upload transaction. However, if neither technical nor

specialist errors have occurred in this example, this transaction step reflects the current

transaction step.

- Transaction ID (ebicsResponse/header/static/TransactionID)

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

- (Conditional) Serial number of the order data segment

(ebicsResponse/header/mutable/SegmentNumber), if the value of

TransactionPhase is not equal to “Initialisation”.

The attribute ebicsResponse/header/mutable/SegmentNumber@lastSegment

specifies whether this is the last data segment.

- Identification and authentication signature of the financial institution

(ebicsResponse/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

response whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_response_H005.xsd“ guarantees that the value of the attribute

@authenticate is equal to “true” for precisely those elements that also need to be

signed.

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_response_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Transfer</TransactionPhase>

 <SegmentNumber lastSegment="true">4</SegmentNumber>

 <OrderId>OR01</OrderId>

 <ReturnCode>000000</ReturnCode>

 <ReportText>[EBICS_OK] OK</ReportText>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 98

 Status: Final Version 3.0

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>…here hash value authentication..</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>…here signature value authentication..</ds:SignatureValue>

 </AuthSignature>

 <body>

 <ReturnCode authenticate="true">000000</ReturnCode>

 </body>

</ebicsResponse>

Diagram 40: EBICS response for transmission of the last order data segment for a business
transaction form order

5.5.1.1.3 Upload Request Structure for Business Transaction Formats (BTF)

The following general rules define the interdependency of the BTF elements:

1) For the element <ServiceName> all usable codes are defined by the EBICS SCRL

(external code list). They have by default a global meaning. An example for globally

accepted services are e.g. SEPA services.

2) Services without a globally accepted implementation guide need to use <Scope>.

3) A global service with some additional specific (market or bilateral) modifications (e.g.

namespace, specific assignments) need to apply an appropriate scope to identify

this fact.

4) Usable scope codes are also specified in an external code list.

5) For the element <ServiceOption> the following structure is binding:

a) 3 characters: Global codes (External code list)

b) 4 characters: Codes defined by a market (External code lists).

The market can be identified by <Scope>-element.

c) 5 to 10 characters: Codes defined bilaterally between a single bank and its customer

(publication not mandatory)

d) All ServiceOption code lists (global, market, (bilateral)) must include the applicable

ServiceNames for each of the defined codes

e) The use of 4-10 character service options requires a scope element.

This means that only <ServiceName> without a <ServiceOption> or together with 3-

character (i.e. globally agreed) ServiceOption code can be globally agreed business

transactions.

To put it in a nutshell: <Scope> refers to the mandatory elements <ServiceName> and

<MsgName> and – if present – to <ServiceOption>. This description is also valid for

download orders, dateils see chapter 5.6.1.1.4).

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 99

 Status: Final Version 3.0

The values of the order parameters are positioned in

ebicsRequest/header/static/OrderDetails

of the type BTUOrderParams which is usable in the upload direction and with order type

“BTU”:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 100

 Status: Final Version 3.0

Diagram 41: BTF structure for upload (using restricted service type)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 101

 Status: Final Version 3.0

XML element/

attribute

Data type # Meaning Example

BTUOrderParams ebics:BTUParamsT

ype

(complex)

1 Required to qualify an

upload business

transaction and the

used/corresponding format

- (complex)

BTUOrderParams

@FileNm

ebics:FileNameStri

ngType (simple) -

restriction base:

minLength

value="1"

maxLength

value="256"

0..1 Original file name of the file

on the client system

Service RestrictedServic

eType (complex)

1 Indicates the target system

(nature)/process to handle

the Transaction/File

- (complex)

ServiceName ebics:
ServiceNameStrin

gType (simple) -

restriction base:

minLength

value="3"

maxLength

value="3"

pattern = [A-Z0-9]

1 Name of the service ServiceName

is subject to an

external code

list

(maintained by

EBICS) -

Example:

“SCT” = SEPA

credit transfer

Scope ebics:
ScopeStringType

(simple)

restriction base:

minLength

value="2"

maxLength

value="3"

0..1 Specifies whose rules have

to be taken into account for

the service. This means

which market / community

defined the rules. External

scope name list specified

and maintained by EBICS.

A missing scope element

means globally accepted

rules.

Scope is

subject to an

external code

list

(maintained by

EBICS).

2-char country

codes

3-char codes

for other

scopes

“BIL” means

bilaterally

agreed

The meaning

of a missing

Scope element

is global.

Instead of a

missing scope

element it can

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 102

 Status: Final Version 3.0

also be

provided as

code “GLB”.

ServiceOption ebics:CodeString

Type (simple)

restriction base:

minLength

value="3"

maxLength

value="10"

pattern = [A-Z0-9]

0..1 Optional characteristic(s) of

a service

ServiceOption

is subject to

external code

lists (global,

market,

bilateral)

Example:

“URG” =

urgent

Container ebics:ContainerF

lagType

0..1 Flag to indicate the use of a

container

Only value

true allowed.

No presence

means false

Container@cont

ainerType

ebics:Containers

tringType (simple)

restriction base:

minLength

value="3"

maxLength

value="3"

pattern = [a-z]

1..1 Indicates what type of

container is used.

If the container

Flag is

present, one of

the internal

values has to

be used

(internal code

list)

“XML”

“ZIP”

“SVC”

MsgName ebics:

MessageNameStrin

gType

(simple)

restriction base:

minLength

value="1"

maxLength

value="10"

pattern = [a-z\.0-9]

1 message names starting

with a BA code (ISO) or MT

(FIN) or string to be

evaluated

 “pain.001”,

“mt103”

Message

names (issued

by markets,

specified in

“scope”) are

also allowed

MsgName@versio

n

ebics:NumString

(simple)

restriction base:

minLength

value="2"

maxLength

value="2"

pattern = [0-9]

0..1 Used ISO version of

message, ignored if no ISO

message name

“03”

MsgName@varian

t

ebics:NumString

(simple)

restriction base:

minLength

value="3"

0..1 Evaluated together with

<MsgName>, ignored if no

ISO message name

“001”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 103

 Status: Final Version 3.0

maxLength

value="3"

pattern = [0-9]

MsgName@format ebics:CodeString

(simple)

restriction base:

minLength

value="1"

maxLength

value="4"

pattern = [A-Z0-9]

0..1 Evaluated together with

<MsgName>, admissible

for each kind of message

name, but only to be used if

it is not the standard format

for the used message

standard (especially non-

XML for ISO 20022).

„XML“, „ASN1“,

„JSON“, „PDF“

SignatureFlag SignatureFlagTyp

e

0..1 Flag to indicate the

presence of ES’ (see rules

in combination with

requestEDS Flag)

Only value

true allowed.

No presence

means false

SignatureFlag@

requestEDS

boolean 0..1 If present the order shall be

authorized within EBICS

(Details regarding bank

server reactions refer to

chapter 3.14)

Only value

true allowed.

No presence

means false

Parameter 0..1 Generic oder params:

Any number of Name-Value

pairs can be specified

Name boolean 1..1 Name of parameter

Value anySimpleType 1..1 Value of parameter

Value@type NCName 1..1 Type of value Recommen-

dation for a

default is

string

5.5.1.2 Processing of EBICS messages

Chapter 5.5.1.1 describes the contents of the EBICS messages that are exchanged within

the framework of an upload transaction. The subject of this chapter is the processing of

these EBICS messages at the bank’s end. Action sequences are pointed out in the flow

diagram in Diagram 35, the course of which is described here in greater detail.

In order to simplify the description of the processes, it is assumed that every processing

step produces a return code (RC) whose value is equal to 0 (“000000”, EBICS_OK) if it has

been possible to successfully complete this step. The technical return code (RCT) and the

bank-technical return code (RCF) are set depending on the RC, and their values then flow

into the EBICS messages.

The validity of the EBICS request is verified on the basis of the XML schema definition file

“ebics_request_H005.xsd”, and with due regard to the restrictions that have been specified

for the individual requests in Chapter 5.5.1.1. The validity verification usually takes place in

parallel and/or interlocked with the other process steps in processing the EBICS request.

The following processes dispense with representation of a process step of type “EBICS

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 104

 Status: Final Version 3.0

request validity verification” in favour of the simplest possible representation. In

consequence, these processes can be terminated by the following additional technical

errors:

 EBICS_INVALID_XML

The received EBICS XML message does not conform to the specifications of the XML

schema in view of syntax. The XML code is not well-formed or, according to the schema,

not valid. For example, if the upload request does not contain the element HostId (that

the schema requires).

 EBICS_INVALID_REQUEST

The received EBICS XML message does not conform to the EBICS specifications in view of

syntax, for example, if the upload request does not contain the element NumSegments

(which is optional according to the XML schema, but required according to chapter

5.5.1.1.1).

 EBICS_INVALID_REQUEST_CONTENT

The received EBICS XML message does not conform to the EBICS specifications in view of

semantics although being correct according to the schema.

5.5.1.2.1 Processing in the initialisation phase

Diagram 45 shows processing at the bank’s end of the EBICS request which is transferred

from the customer system to the bank system in the initialisation stage of an upload

transaction. The individual processing steps are explained in greater detail in the following

text:

I. Generation of an EBICS transaction (see Diagram 44)

This processing step is relevant for both upload and download transactions. The following

description takes both transaction types into consideration so that the following chapters on

the subject of download transactions will be able to refer to this description.

I.a. Verifying the identifier for the business transaction (and administrative order

as well)

Verification of the order type returns the technical return code

EBICS_INVALID_ORDER_IDENTIFIER in the case of an invalid administrative order type

or rather an invalid combination of BTF identifiers, or the technical return code

EBICS_UNSUPPORTED_ORDER_IDENTIFIER in the case of a valid but optional order

that is not supported by the bank system.

I.b. Replay test

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 105

 Status: Final Version 3.0

The replay test returns the following return code EBICS_TX_MESSAGE_REPLAY if the

EBICS request is a replayed request. Details on replay avoidance can be found in the

Appendix (Chapter 11.4).

I.c. Verifying the authenticity of the EBICS request (see Diagram 42):

The identification and authentication signature is provided by a technical subscriber, if such

is a component of the control data. Otherwise the identification and authentication signature

is generated by a (non-technical) subscriber of the EBICS transaction who submits the

order or, subsequently, bank-technical ES’s that relate to an existing order. In order to be

able to verify the identification and authentication signature of a subscriber (technical or

non-technical), the corresponding combination of customer and subscriber ID must be

registered in the bank system and the state of the subscriber must be set to “Ready”. In

error situations that result from an invalid combination of customer ID / subscriber ID or an

inadmissible subscriber state, the sender receives the technical return code

EBICS_AUTHENTICATION_FAILED.

Verification of the identification and authentication signature contains:

- A verification as to whether all required elements of the EBICS message have been

signed with the identification and authentication signature: These are all XML elements

of the EBICS request whose attribute value for @authenticate is equal to “true”.

- Verification of the identification and authentication signature itself.

This processing step terminates with the technical error

EBICS_AUTHENTICATION_FAILED if the identification and authentication signature

cannot be successfully verified.

If the successfully-verified signature originates from a technical subscriber, the validity and

the state of the (non-technical) subscriber is also verified. Errors that result from an invalid

combination of customer ID/ subscriber ID or an inadmissible subscriber state are

communicated to the sender of the EBICS request with the help of the technical error codes

EBICS_USER_UNKNOWN and EBICS_INVALID_USER_STATE.

Reason: If the identification and authentication signature cannot be successfully verified,

the EBICS request potentially originates from an attacker. In this event, errors such as

“Unknown subscriber” or “Inadmissible subscriber state” are not forwarded to the sender of

the EBICS request so that potential attackers are not given precise information on the

validity of subscriber IDs or the state of subscribers. However, after the identification and

authentication signature of the technical subscriber has been successfully verified, the

errors EBICS_USER_UNKNOWN and EBICS_INVALID_USER_STATE, which relate to the

non-technical subscriber of the EBICS transaction, are forwarded to the authenticated

sender.

I.d. Verifying the hash value of the bank keys

This verification is intended to prevent a subscriber from submitting orders when they are

not in possession of the financial institution’s current public keys. In Version “H005” of

EBICS the ES of the financial institutions is only planned (see Chapter 3.5.2). For this

reason, only the hash values of the public identification and authentication key and the

public encryption key are verified in Version “H005”. In this processing step, subsequent

EBICS versions that support the financial institution’s ES must also verify the hash value of

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 106

 Status: Final Version 3.0

the financial institution’s public bank-technical key. For this reason, the subscriber transfers

the hash values of the financial institution’s public key with which they have been provided.

The bank system verifies these hash values. If they do not match the hash values of the

current public keys, transaction initialisation is terminated with the technical return code

EBICS_BANK_PUBKEY_UPDATE_REQUIRED.

If the subscriber does not have the financial institution’s current identification and

authentication they cannot successfully verify the identification and authentication signature

of the financial institution’s EBICS response. Nevertheless, when the error

EBICS_BANK_PUBKEY_UPDATE_REQUIRED occurs it should be verified as to whether

the bank keys are up-to-date, and if necessary the latest keys should be downloaded with

the help of the administrative order type HPB.

I.e. Subscriber-related order verifications (see Diagram 43)

I.e.a. Verifying authorisation for the business transaction (and administrative

order as well)

This verifies as to whether the subscriber is entitled to submit the order (administrative

order type or business transaction format) in question. If this verification fails, transaction

initialisation is terminated with the business related error

EBICS_AUTHORISATION_ORDER_FAILED.

In the case of upload orders, order type authorisation is successful if the subscriber has at

least ES authorisation of class “T” for the order in question.

Note: The ES authorisation of the actual signatory of the order is not verified here. This

verification is a part of the (optional) preliminary verification of an order.

In the case of download orders, the order authorisation is not coupled to an ES

authorisation. It is verified as to whether the subscriber is authorised for the order type in

question.

I.e.b. Bank-technical preliminary verification

This verification only affects upload orders, details of the preliminary verification are given

in Chapter 5.3.

If the optional preliminary verification of orders is principally not supported by the financial

institution, but the EBICS request contains data for preliminary verification of the order,

the information EBICS_NO_ONLINE_CHECKS is returned.

This technical information has no influence on the ongoing transaction. The order is

continued.

The bank-technical preliminary verification of an upload order returns the following

business related return codes in the event of an error:

 EBICS_SIGNATURE_VERIFICATION_FAILED
This business related error occurs when the ES of the order signatory could not be
successfully verified

 EBICS_INVALID_SIGNATURE_FILE_FORMAT
The submitted ES data do not conform to the specified format.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 107

 Status: Final Version 3.0

 EBICS_ PARTNER_ID_MISMATCH
The partner ID (=customer ID) of the ES file differs from the partner ID (=customer ID) of
the submitter.

 EBICS_ACCOUNT_AUTHORISATION_FAILED
This business related error code is returned when the account authorisation verification
fails for one of the signatories

 EBICS_AMOUNT_CHECK_FAILED
This business related error occurs when the limit verification fails for one of the
signatories

 EBICS_SIGNER_UNKNOWN
This business related error occurs when one of the signatories is not a valid subscriber

 EBICS_INVALID_SIGNER_STATE
This business related error occurs when the state of one of the signatories is not equal to
“Ready”.

 For Return codes relating to CA-issued certificates, refer to Annex 1.

I.e.c. Order number verification

The following verifications only relate to business related upload orders:

1) It is only permitted to send business related orders without an order number.

2) Files which only contain an ES but no further data are not allowed except for the

administrative order types HVE and HVS (and SPR as well).

3) For HVE and HVS please note that the aforesaid refers to the order number of HVE itself

(and HVS, respectively) and not to the related order in the EDS. It is self-evident that this

(related) order number has to be always transmitted (via OrderParams).

“

Hence the possible error codes for upload requests are:

 For an SPR (and HVE and HVS, respectively) upload request which is submitted with
an order number, the code EBICS_INVALID_REQUEST_CONTENT is returned

 Fot the administrative order types HVE or HVS submit an unknown order number, the
code EBICS_ORDERID_UNKNOWN is returned

 For an HVE- or HVS upload request which is submitted with an already assigned order
which has, however, an invalid processing state (because the order has already been
fully authorized or rejected) the code EBICS_ORDERID_ALREADY_FINAL is returned.

Rule for an upload response: Every upload response contains TransactionID and OrderId

assigned by the server (also in the case of an error)

I.f. Generation of a new EBICS transaction with unambiguous transaction ID

When all of the previous verifications have been successfully carried out and more

transaction steps follow, the EBICS transaction administration generates a new EBICS

transaction at the bank’s end with a transaction ID that is unambiguous throughout the bank

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 108

 Status: Final Version 3.0

system. Details on generation of the transaction ID are given in the Appendix (Chapter

11.6).

II. Pre-processing

Here, pre-processing relates to the transmitted ES’s and the order parameters of all orders

considered in this chapter except the administrative order types HVE and HVS. Pre-

processing is not a component of the EBICS specification and is thus dependent on bank

system implementation. For example, intermediate storage of ES’s and order parameters is

a part of this pre-processing.

III. Forwarding to managment of pending orders

For the administrative order types HVE and HVS the the EBICS transaction comprises a

single request/response pair. In this case the transmitted order parameters and ES’s are

forwarded directly to the management of pending orders and the transaction is terminated.

The component ‘management of pending orders’ is not a part of the EBICS standard.

IV. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer

system. In the event of an error, this EBICS message contains the corresponding technical

or business related error code of preceding process steps. The contents of this EBICS

message are described in greater detail in Chapter 5.5.1.1.1.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 109

 Status: Final Version 3.0

RCT = EBICS_AUTHENTICATION_FAILED

RCF = 0

Validity check
USR ID/ partner ID

[RC = 0]

state check for USR

Valid states: Ready

Authentication signature verification
(signature created by USR)

[RC = 0]

[RC ≠ 0]

Validity check

user ID/ partner ID

[RC = 0]

[RC ≠ 0]

state check for user

Valid states: Ready

RCT = EBICS_UNKNOWN_USER

RCF = 0

RCT = EBICS_INVALID_USER_STATE

RCF = 0

[RC ≠ 0]

[RC ≠ 0]

[RC ≠ 0]

[EBICS message transmitted

by a technical user]

else

Authentication Check of the EBICS-Request

USR = user

USR = technical user

[RC = 0]

[USR == user]

[else]

1

1

2

2

Diagram 42: Detailed description of the process step “Authentication check of the EBICS
request”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 110

 Status: Final Version 3.0

Diagram 43: Detailed description of the process step “User related order checks”

Check of authorization AdminOrderType and BTF identifier

[RC = 0]
RCT = 0

RCF = EBICS_AUTHORIZATION_FAILED

Order Prevalidation
[Upload]

[Download]
[RC = 0]

RCT = 0
RCF = RC

[RC ? 0]

[RC ? 0]

[RC = 0]
RCT = 0

RCF = RC

[RC ? 0]

User related order checks

[Credit institute
supports
prevalidation]

else

2

2

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 111

 Status: Final Version 3.0

Diagram 44: Detailed description of the process step “Creation of an EBICS transaction”

Hash value checks of the credit institute’s public keys

[RCT = 0 and RCF = 0]

[RC = 0]

RCT = EBICS_BANK_PUBKEY_UPDATE_REQUIRED
RCF = 0

Creation of an EBICS transaction
with a unique transaction ID

Creation of an EBICS transaction

upload ES only

file upload

RCT = 0
RCF = RC

Check AdminOrderType and BTF identifier

[RC = 0]

[RC ? 0]

[RC ? 0]

Replay Test

[RC = 0]

RCT = EBICS_TX_MESSAGE_REPLAY
RCF = 0

[RC ? 0]

User - related order checks

[Download]

[Upload]

Authentication check of the EBICS request

else

[RCT = 0 and RCF = 0]

else

1

1

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 112

 Status: Final Version 3.0

Preprocessing: EUs, order parameters

EBICS response creation

RCT = 0

RCF = 0

Sending EBICS response

Receiving EBICS request

Creation of an EBICS transaction

[OZHNN, DZHNN]

[UZHNN] Forwarding the EUs to the

Management of outstanding orders

[RCT = 0 and RCF = 0]

else

Diagram 45: Processing the EBICS request from transaction initialisation

5.5.1.2.2 Processing in the data transfer phase

The processing at the bank’s end of the EBICS request that is transmitted in the data

transfer phase from the customer’s system to the bank’s system is represented in Diagram

47 and Diagram 48. The individual processing steps are explained in greater detail in the

following text:

I. Verifying the EBICS transaction (see Diagram 46)

This processing step is relevant for both upload and download transactions. The following

description takes both transaction types into consideration so that the following chapters on

the subject of download transactions will be able to refer to this description.

I.a. Verifying the transaction ID

A verification is carried out as to whether the EBICS transaction with the corresponding ID

exists as an open, not yet completed, transaction in the bank system’s EBICS transaction

administration system. If this is not the case, the technical error code

EBICS_TX_UNKNOWN_TXID is returned to the sender of the EBICS request.

I b. Verifying the authenticity of the EBICS request (see Diagram 42)

This EBICS request authenticity verification takes place in exactly the same way as in the

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 113

 Status: Final Version 3.0

initialisation phase of the transaction (see Chapter 5.5.1.2.1, I.c) – apart from the fact that

the required data (e.g. customer/subscriber ID) is not part of the header data of the EBICS

request but is stored in the financial institution’s transaction administration with the

transaction ID in question. If the verification cannot be carried out successfully the EBICS

response contains a corresponding error code in accordance with the sequence shown in

Diagram 42. This is one of the errors EBICS_AUTHENTICATION_FAILED,

EBICS_USER_UNKNOWN or EBICS_INVALID_USER_STATE. Unauthenticated requests

do not have any effect on the state of the transaction in the bank system’s transaction

administration. Data that has an effect on the state of a transaction such as e.g. the next

expected transaction step or the current recovery counter, is not changed. This prevents

attackers from being able to have any effect on a transaction with the help of

unauthenticated EBICS requests. The transaction can be continued by the subscriber as if

the EBICS request with the invalid identification and authentication signature had not been

received.

I c. Verifying TxPhase/ TxStep from the EBICS request

At this point, a verification is carried out as to whether the transaction step from the EBICS

request matches the current state of the EBICS transaction in the bank system if one

assumes a specific sequential order for the transaction steps.

In the case of an upload transaction, the sequential order according to Diagram 35 is

assumed. Verificationing of the transaction phase / transaction step is successful when:

 The last transaction step initialised by the subscriber has been successfully

completed, i.e. initialisation and transmission of the nth data segment was successful.

 The transaction step from the EBICS request is the next transaction step in the

sequential order of transaction steps, i.e. it is the transmission of the 1st or the (n+1)th

data segment.

The normal sequential order of transaction steps of a download transaction is shown in

Diagram 52. The transaction phase / transaction step is deemed to have been successfully

verified when the following two conditions are met:

 The last transaction step initiated by the subscriber has been successfully implemented,

i.e. the initialisation (and hence transmission of the first data segment, or the request of

the nth data segment within the framework of the data transfer were successful.

 The transaction step from the EBICS request is the next transaction step in the

sequential order of the transaction steps, i.e. it is the request for the (n+1)th data

segment or acknowledgement of the downloaded data where n represents the last data

segment.

II. Evaluation of the EBICS transaction verification results

If the transaction step verification was unsuccessful, then:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 114

 Status: Final Version 3.0

 A verification is carried out as to whether the upload transaction can be recovered, if

the bank system supports the recovery of transactions. This verification is carried out in

accordance with the description in Chapter 5.5.2. The technical error code

EBICS_TX_RECOVERY_SYNC is returned if the transaction can be recovered, otherwise

the transaction is terminated with the technical error code EBICS_TX_ABORT.

 The upload transaction is terminated with the business related error code

EBICS_RECOVERY_NOT_SUPPORTED if the bank system does not support transaction

recovery. If MAX is set to 0, the flow diagram also considers the case where recovery is not

supported.

III. Verifying segment number and segment size

The serial number of the transmitted order data segment

(ebicsRequest/header/mutable/SegmentNumber) must be less than or equal to the

total number of data segments that are to be transmitted. If the number of transmitted order

data segments matches the total number, the value of attribute

ebicsRequest/header/mutable/SegmentNumber@lastSegment must also be equal

to “true”. If one of these two conditions is not fulfilled, the transaction is terminated with the

technical error code EBICS_TX_SEGMENT_NUMBER_EXCEEDED.

If the serial number of the transmitted order data segment is less than the total number of

the order data segments that are to be transmitted and the value of attribute

ebicsRequest/header/mutable/SegmentNumber@lastSegment is nevertheless

“true”, then technical return code EBICS_TX_SEGMENT_NUMBER_UNDERRUN of error

class “Note” is returned.

The size of the transmitted order data segment may not exceed the segment size of 1 MB

that has been firmly specified for EBICS “H005”. Otherwise the transaction is terminated

with the technical error code EBICS_SEGMENT_SIZE_EXCEEDED.

IV. Pre-processing

Here, pre-processing relates to the transmitted order data segment. Pre-processing of order

data segments is not part of the EBICS specification. It is dependent on the bank system

implementation, intermediate storage of the order data segment may be a part of pre-

processing.

V. Forwarding to management of pending orders

If the transmitted order data segment was the last one, and the matter at hand is a bank-

technical upload order, all of the order parameters, ES’s and order data transmitted within

the framework of the EBICS transaction are forwarded to the management of pending

orders. Following this, the EBICS transaction can be terminated.

The component ‘management of pending orders’ is not a part of the EBICS standard.

(Optional) check for double upload : As the data digest of the order data is transmitted

within the transfer phase the bank server has the option to control by means of the data

digest if the order has already been transmitted (if necessary also by taking other order

information into consideration). If the order already exists on the server (same data digest

was already transmitted recently), the request will be rejected by the return code

EBICS_ORDER_ALREADY_EXISTS.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 115

 Status: Final Version 3.0

Note: Checks basing on this data digest are optional as double uploads can also be

supervised by taking other action within the implementation.

VI. Verifying and implementing the order

If the transmitted order data segment was the last one, and if the order is a system-related

upload order, it is synchronously verified and implemented on the basis of the transmitted

order data. The returned technical or business related error codes are dependent on the

order type and are defined in the chapters in which these order types are described.

VII. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer

system. In the event of an error, this EBICS message contains the corresponding technical

/ business related error code of the preceding process steps. The contents of this EBICS

message are described in greater detail in Chapter 5.5.1.1.2.

Validity check

TxID

RCT = EBICS_TX_UNKNOWN_TXID

RCF = 0

else

Check TxPhase/ TxStep from the EBICS request

[RC = 0]

[RC ≠ 0]

EBICS transaction verification

Authentication check of the EBICS request

[RCT = 0 and RCF = 0]

Diagram 46: Detailed description of the process step “EBICS transaction verification”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 116

 Status: Final Version 3.0

Receiving EBICS request

[RC = 0]

EBICS transaction abort
(release of resources)

[RC ≠ 0] [RecoveryCounter == MAX]

RCT = EBICS_TX_ABORT

RCF = 0

RCT = EBICS_TX_RECOVERY_SYNC

RCF = 0

RecoveryCounter++

[RecoveryCounter

< MAX]

EBICS transaction verification

RCT = 0

RCF = 0

[RCT = 0 and RCF = 0]

2

1

else

Diagram 47: Processing an EBICS request for transmission of an order data segment (part
1)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 117

 Status: Final Version 3.0

Preprocessing: order data segment

EBICS response creation

Sending EBICS response

EBICS transaction closure

(release of resources)

[last segment]

else

[system-related

order]

[business-driven

order]

Order check and order execution

[RC ≠ 0]

[RC = 0]

[RC is a

non-technical error]
RCT = 0

RCF = RC

RCT = RC

RCF = 0

else

Forwarding the order data,

order parameters and order EUs to the

Management of outstanding orders

[RC = 0]

[RC ≠ 0] RCT = RC

RCF = 0

Segment number / size check

[RC = 0]

[RC ≠ 0] RCT = RC

RCF = 0

EBICS transaction abort

(release of resources)

else

[RCT ==

*EXCEEDED]

1

2

Diagram 48: Processing an EBICS request for transmission of an order data segment (part
2)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 118

 Status: Final Version 3.0

5.5.2 Recovery of upload transactions

The customer system can initiate the recovery mechanism when one of the following error

situations occurs:

 Transport error during transmission of an EBICS request in the data transfer phase of the

transaction

 Timeout or transport error when receiving an EBICS transaction in the data transfer

phase of the transaction

 Loss of the transaction state at the subscriber’s end.

Incorrect processing of an EBICS request at the bank’s end during the data transfer phase,

caused by e.g. errors in the pre-processing of a transmitted order data segment, may

require renewed transmission of this request. This is a special recovery case, since the

customer system does not recognise the necessity for repetition of the transmission without

further action. This special case can be dealt with by the EBICS recovery mechanism.

EBICS uses an optimistic approach when recovering an upload transaction and dispenses

with a separate synchronisation step with the bank system. If one of the above error

situations occurs, the customer system initially assumes knowledge of the transaction’s

recovery point due to the transaction data stored (possibly in a sustained manner) in the

customer system.

If the customer system assumes that the recovery point is the transmission of the nth order

data segment, then the next initiated transaction step is transmission of the (n+1)th order

data segment. EBICS requests within the framework of the recovery of upload transactions

do not differ from the EBICS request of a normal, error-free flow of an upload transaction.

By way of example, the flow of a transaction that repeatedly necessitates recovery is shown

in Diagram 49. In each case, the recovery takes place without explicit synchronisation

between the customer system and the bank system. The 2nd order data segment is

transmitted three times since the customer system could not receive the corresponding

EBICS response due to a timeout or a transport error. On the second and third transmission

of the 2nd order data segment, the customer system assumes that the recovery point is

transmission of the 1st order data segment. The value of the recovery counter is equal to 2

after the third and successful transmission of the 2nd order data segment, since the last two

transmissions of the 2nd order data segment were evaluated as recovery attempts by the

bank system. The transaction finally fails due to the number of recovery attempts being too

high.

If the assumption regarding the recovery point is false, the EBICS response for

transmission of the (n+1)th data segment receives the actual recovery point of the

transaction in addition to the technical return code EBICS_TX_RECOVERY_SYNC. For

example, if this recovery point is the transmission of order data segment k, the transaction

can easily be resumed after this synchronisation with transmission of segments k+1, k+2,

etc.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 119

 Status: Final Version 3.0

Diagram 50 shows the successful flow of a transaction that contains a recovery of the

transaction after an explicit synchronisation between the customer system and the bank

system. Here, the customer system transmits order data segment 1 in a state in which the

bank system actually expects segment 3. The financial institution’s EBICS response (see

Diagram 51) thus contains the recovery point of the transaction, which in this case is

transmission of the 2nd order data segment. Following this, the customer system continues

with transmission of order data segment 3 and ends the transaction with the transmission of

the last segment 4.

Independent of whether a customer system detects errors in the flow of a transaction, the

bank system can force renewed transmission of an EBICS request. Analogously to the

above recovery situations, this is achieved by the associated EBICS response containing

the technical return code EBICS_TX_RECOVERY_SYNC as well as the recovery point of

the transaction.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 120

 Status: Final Version 3.0

Transport layer

ok

Customer system Bank system

transfer of data segment 1 for transaction xxx

transfer of data segment 2 for transaction xxx

transmission failure, timeout

1. transfer retry of data segment 2 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx

transmission failure, timeout

2. transfer retry of data segment 2 for transaction xxx

ok

RecoveryCounter == 0,

recovery point:

initialisation

RecoveryCounter == 0,

recovery point:

transfer/ segment 1

RecoveryCounter == 1,

recovery point:

transfer/ segment 1

RecoveryCounter == 2 == MAX,

recovery point:

transfer/ segment 2

transfer of data segment 3 for transaction xxx

transmission failure, timeout

1. transfer retry of data segment 3 for transaction xxx

system-related error: EBICS_TX_ABORT

RecoveryCounter == 2 == MAX,

recovery point:

transfer/ segment 2

RecoveryCounter == 0,

recovery point:

transfer/ segment 1

Diagram 49: Termination of the recovery of an upload transaction due to the maximum
number of recovery attempts being exceeded

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 121

 Status: Final Version 3.0

ok

Customer system Bank system

transfer of data segment 2 for transaction xxx

transfer of data segment 1(≠ 3) for transaction xxx

transfer of data segment 3 for transaction xxx

transaction initialisation

ok, unique transaktion ID = xxx

system-related return code: EBICS_TX_RECOVERY_SYNC,

recovery point: transfer/ data segment 2

ok

ok

transfer of data segment 1 for transaction xxx

transfer of data segment 4 for transaction xxx

ok

Transport layer

RecoveryCounter == 0,

recovery point:

initialisation

RecoveryCounter == 0,

recovery point:

transfer/ segment 1

RecoveryCounter == 1,

recovery point:

transfer/ segment 2

RecoveryCounter == 0,

recovery point:

transfer/ segment 2

RecoveryCounter == 1,

recovery point:

transfer/ segment 3

Diagram 50: Recovery of an upload transaction with explicit synchronisation between
customer system and bank system

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_response_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <TransactionID>ABCDEF41394644363445313243ABCDEF</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Transfer</TransactionPhase>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 122

 Status: Final Version 3.0

 <SegmentNumber lastSegment="false">2</SegmentNumber>

 <OrderId>OR01</OrderId>

 <ReturnCode>061101</ReturnCode>

 <ReportText>[EBICS_TX_RECOVERY_SYNC] Synchronisation necessary</ReportText>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>.. here hash value authentication ..</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>.. here siganture value authentication ..</ds:SignatureValue>

 </AuthSignature>

 <body>

 <ReturnCode authenticate="true">000000</ReturnCode>

 </body>

</ebicsResponse>

Diagram 51: EBICS response with technical error EBICS_TX_RECOVERY_SYNC

5.6 Download transactions

5.6.1 Sequence of download transactions

The sequence of a download transaction is shown in Diagram 52 by means of a flow

diagram. This sequence diagram shows the exchange of EBICS messages in the individual

phases of a download transaction. The first order data segment is contained in the EBICS

response of the transaction initialisation. All other order data segments are transmitted in a

loop that breaks off as soon as the last data segment has been received by the customer

system. (see loop break-off condition “[last data segment has been received]”). Finally, the

successful receipt of all order data segments is acknowledged by the customer system.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 123

 Status: Final Version 3.0

Customer system

transaction initialisation

request data segment for transaction xxx

ok, unique transaction ID = xxx, segment 1 of the requested data

ok, transfer of data segment

receipt for download data of transaction xxx (acknowledgement)

ok

Bank system

loop [last segment has been transmitted]

Diagram 52: Error-free sequence of a download transaction

5.6.1.1 Description of EBICS messages

For clarification purposes, the following description of the transaction steps in a download

transaction use example messages for the processing of the download of an end of period

statement (MT940) taking into account German rulebooks. It refers to elements of these

example messages, using XPath notation.

The following chapters describe the EBICS messages in the individual phases of a

download transaction. The data that is a component of these messages is listed here. Data

that is fundamentally optional is marked “(optional)”. Data that may only be missing under

certain conditions is instead marked “(conditional)”. Optional XML elements that are missing

in the description of an EBICS message relating to a specific transaction phase may not be

present in this EBICS message. Optional XML elements that are present in the description

of an EBICS message relating to a specific transaction phase MUST always be placed

correspondingly in this EBICS message.

EBICS requests for download transactions are (XML) instance documents that conform to

ebics_request_H005.xsd and comprise the top-level element ebics which is declared in

ebics_request_H005.xsd. EBICS responses for download transactions are instance

documents that conform to ebics_response_H005.xsd and comprise the top-level element

ebics which is again declared in ebics_response_H005.xsd.

5.6.1.1.1 EBICS messages in transaction initialisation

 Transmission of the following data in the EBICS request (see example in Diagram 53):

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 124

 Status: Final Version 3.0

- Host ID of the EBICS bank computer system (ebicsRequest/header/static/HostID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with the

setting “Initialisation”

- Combination of Nonce and Timestamp to avoid replaying old EBICS messages

(ebicsRequest/header/static/Nonce,

ebicsRequest/header/static/Timestamp)

- Subscriber (ebicsRequest/header/static/PartnerID,

ebicsRequest/header/static/UserID) that is submitting an order or that is

providing bank-technical ES’s for an existing order.

- (Conditional) technical subscriber (ebicsRequest/header/static/PartnerID,

ebicsRequest/header/static/SystemID)

SystemID must be present if the customer system is a multi-user system. The technical

subscriber is responsible for the generation of the EBICS requests (including the

identification and authentication signatures) that belong to orders that are submitted or

bank-technically signed by the subscriber.

- (Optional) information on the customer product

(ebicsRequest/header/static/Product)

- Administrative Order type

(ebicsRequest/header/static/OrderDetails/AdminOrderType)

- - Order parameters

(ebicsRequest/header/static/OrderDetails/OrderParams)

The characteristics of the order parameters are dependent on the administrative

order type. For the download of business transaction formats the order parameters

and usage rules are specified in detail in chapter 5.6.1.1.4

- Hash values of the financial institution’s public keys that are available to the subscriber

(ebicsRequest/header/static/BankPubKeyDigests/Authentication,

ebicsRequest/header/static/BankPubKeyDigests/Encryption,

ebicsRequest/header/static/BankPubKeyDigests/Signature).

Both the utilised hash algorithm and the version of the corresponding identification and

authentication, encryption and signature process will be specified for each of these hash

values.

In Version “H005” of the EBICS protocol the ES of the financial institutions is only

planned (see Chapter 3.5.2). The element BankPubKeyDigests/Signature is

already contained in this description in preparation for future versions of EBICS, but in

Version “H005” its maximum frequency (maxOccurs) is set to 0.

- Security medium for the subscriber’s bank-technical

key(ebicsRequest/header/static/SecurityMedium)

- Identification and authentication signature of the technical subscriber, if such is available,

otherwise the identification and authentication signature of the subscriber themselves

(ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

request whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_request_H005.xsd“ guarantees that the value of the attribute

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 125

 Status: Final Version 3.0

@authenticate is equal to “true” for precisely those elements that also need to be

signed.

.

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 <Nonce>98498A65465C645E645F64565462C645</Nonce>

 <Timestamp>2005-01-30T15:40:45.123Z</Timestamp>

 <PartnerID>CUSTM001</PartnerID>

 <UserID>USR001</UserID>

 <Product Language="en" InstituteID="Institute ID">Product Identifier</Product>

 <OrderDetails>

 <AdminOrderType>BTD</OrderType>

 <BTDOrderParams>

 <Service>

 <ServiceName>EOP</ServiceName>

 <Scope>DE</Scope>

 <MsgName>mt940</MsgName>

 </Service> <DateRange>

 <Start>2016-09-01</Start>

 <End>2016-09-30</End>

 </DateRange>

 </BTDOrderParams>

 </OrderDetails>

 <BankPubKeyDigests>

 <Authentication Version="X002"

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">1H/rQr2Axe9hYTV2n/tCp+3UIQQ=</Authentica

tion>

 <Encryption Version="E002"

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">2joEROI3092OIFP394+WOIer2WI=</Encryption

>

 </BankPubKeyDigests>

 <SecurityMedium>0000</SecurityMedium>

 </static>

 <mutable>

 <TransactionPhase>Initialisation</TransactionPhase>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue> …here hash value for authentication..</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue> …here authentication signature..</ds:SignatureValue>

 </AuthSignature>

 <body/>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 126

 Status: Final Version 3.0

</ebicsRequest>

Diagram 53: EBICS request for transaction initialisation for download of an end of period
statement (MT940)

 Transmission of the following data in the EBICS response (see example in Diagram 54)

- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- (Conditional) Transaction ID that is unambiguous throughout the bank system

(ebicsResponse/header/static/TransactionID), if no technical errors have

occurred during the transaction initialisation

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase) with the

setting “Initialisation”

- (Conditional) Total number of order data segments to be transmitted

(ebicsResponse/header/static/NumSegments), if no technical or bank-technical

errors have occurred

- (Conditional) Serial number of the order data segment transmitted in this response

(ebicsResponse/header/mutable/SegmentNumber), if no technical or bank-

technical errors have occurred.

SegmentNumber is always set to 1 in the initialisation phase. The attribute

ebicsResponse/header/mutable/SegmentNumber@lastSegment specifies

whether it is the last data segment

- Identification and authentication signature of the financial institution

(ebicsResponse/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

response whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_response_H005.xsd“ guarantees that the value of the attribute

@authenticate is equal to “true” for precisely those elements that also need to be

signed.

- (Conditional) information for encryption of the order data and possibly the ES of the order

data (ebicsResponse/body/DataTransfer/DataEncryptionInfo), if no errors

of a technical or bank-technical nature have occurred.

In particular, DataEncryptionInfo also contains the asymmetrically-encrypted

transaction key

(ebicsResponse/body/DataTransfer/DataEncryptionInfo/TransactionKe

y)

- (Conditional) The first order data segment

(ebicsResponse/body/DataTransfer/OrderData), if no errors of a technical or

bank-technical nature have occurred

- (Conditional) The bank-technical ES of the order data from the financial institution

(ebicsResponse/body/DataTransfer/SignatureData), if no errors of a

technical or bank-technical nature have occurred.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 127

 Status: Final Version 3.0

In the EBICS protocol the ES of the financial institutions is only planned (see Chapter

3.5.2).

- (Optional) time stamp for the last updating of the bank parameters

(ebicsResponse/body/TimestampBankParameter).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

xmlns="urn:org:ebics:H005"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:org:ebics:H005 ebics_response_H005.xsd"

Version="H005" Revision="1">

<header authenticate="true">

 <static>

 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>

 <NumSegments>2</NumSegments>

 </static>

 <mutable>

 <TransactionPhase>Initialisation</TransactionPhase>

 <SegmentNumber lastSegment="false">1</SegmentNumber>

 <ReturnCode>000000</ReturnCode>

 <ReportText>[EBICS_OK] OK</ReportText>

 </mutable>

</header>

<AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">

 </ds:SignatureMethod>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue> …here authentication signature..</ds:SignatureValue>

</AuthSignature>

<body>

 <DataTransfer>

 <DataEncryptionInfo authenticate="true">

 <EncryptionPubKeyDigest Version="E002"

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">..here hash value of the public bank key

for encryption..</EncryptionPubKeyDigest>

 <TransactionKey>En6KEB6ArEzw+iq4N1wm6Eptcyx…</TransactionKey>

 <HostID>EBIXHOST</HostID>

 </DataEncryptionInfo>

 <OrderData>…</OrderData>

 </DataTransfer>

 <ReturnCode authenticate="true">000000</ReturnCode>

</body>

</ebicsResponse>

Diagram 54: EBICS response for transaction initialisation for the download of an end of
period statement (MT940)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 128

 Status: Final Version 3.0

5.6.1.1.2 EBICS messages in the data transfer phase

 Transmission of the following data in the EBICS request (see example in Diagram 55):

Host ID of the EBICS bank computer system (ebicsRequest/header/static/HostID)

Data for identification of the current transaction step:

- Transaction ID (ebicsRequest/header/static/TransactionID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with the

setting “Transfer”

- Serial number of the order data segment that is to be downloaded in this transaction step

(ebicsRequest/header/mutable/SegmentNumber)

Attribute ebicsRequest/header/mutable/SegmentNumber@lastSegment has no

meaning for this EBICS request

Identification and authentication signature of the technical subscriber, if such is available,

otherwise the identification and authentication signature of the subscriber themselves

(ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

request whose attribute value for @authenticate is equal to “true”. The definition of the

XML schema “ebics_response_H005.xsd“ guarantees that the value of the attribute

@authenticate is equal to “true” for precisely those elements that also need to be

signed.

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Transfer</TransactionPhase>

 <SegmentNumber lastSegment="false">2</SegmentNumber>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">

 </ds:SignatureMethod>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>… here hash value for authentication…</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo> <ds:SignatureValue> …here authentication signature..</ds:SignatureValue>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 129

 Status: Final Version 3.0

 </AuthSignature>

 <body/>

</ebicsRequest>

Diagram 55: EBICS request for transmission of the next order data segment for the
download of an end of period statement (MT940)

 Transmission of the following data in the EBICS response (see example in Diagram 56)

- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- Data for identifying a transaction step

If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this

transaction step identifies the last recovery point of the download transaction. However,

if no technical or business related errors have not occurred in this example, this

transaction step reflects the current transaction step:

- Transaction ID (ebicsResponse/header/static/TransactionID)

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

- Serial number of the order data segment

(ebicsResponse/header/mutable/SegmentNumber).

This is the number of the order data segment that has been requested in the EBICS

request or, in the event of the error EBICS_TX_RECOVERY_SYNC, the number of the

last order data segment that has been successfully transmitted to the customer system by

the bank system. In the event of the error EBICS_TX_RECOVERY_SYNC, the value of

SegmentNumber is always equal to 1 if the value of TransactionPhase is

“Initialisation”.

The attribute ebicsResponse/header/mutable/SegmentNumber@lastSegment

specifies whether it is the last order data segment.

- Identification and authentication signature of the financial institution

(ebicsResponse/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

response whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_response_H005.xsd“ guarantees that the value of the attribute

@authenticate is equal to “true” for precisely those elements that also need to be

signed.

- (Conditional) The requested order data segment

(ebicsResponse/body/DataTransfer/OrderData), if no errors of a technical or

bank-technical nature have occurred.

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_response_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 130

 Status: Final Version 3.0

 <static>

 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Transfer</TransactionPhase>

 <SegmentNumber lastSegment="true">2</SegmentNumber>

 <ReturnCode>000000</ReturnCode>

 <ReportText>[EBICS_OK] OK</ReportText>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">

 </ds:SignatureMethod>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>… here hash value for authentication …</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>…here authentication signature… </ds:SignatureValue>

 </AuthSignature>

 <body>

 <DataTransfer>

 <OrderData>…</OrderData>

 </DataTransfer>

 <ReturnCode authenticate="true">000000</ReturnCode>

 </body>

</ebicsResponse>

Diagram 56: EBICS response for transmission of the last order data segment for the
download of an end of period statement (MT940)

5.6.1.1.3 EBICS- messages in the acknowledgement phase

 Transmission of the following data in the EBICS request (see example in Diagram 57)

- Host ID of the EBICS bank computer system

(ebicsRequest/header/static/HostID)

- Data for identification of the current transaction step:

- Transaction ID (ebicsRequest/header/static/TransactionID)

- Transaction phase (ebicsRequest/header/mutable/TransactionPhase) with the

setting “Receipt”

- Identification and authentication signature of the technical subscriber, if such is available,

otherwise the identification and authentication signature of the subscriber themselves

(ebicsRequest/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

request whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_request_H005.xsd“ guarantees that the value of the attribute

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 131

 Status: Final Version 3.0

@authenticate is equal to “true” for precisely those elements that also need to be

signed

- Acknowledgement (ebicsRequest/body/TransferReceipt/ReceiptCode):

The value of the acknowledgement is 0 (“positive acknowledgement”) if download and

processing of the order data was successful. Otherwise the value of the

acknowledgement is 1 (“negative acknowledgement”).

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <HostID>EBIXHOST</HostID>

 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Receipt</TransactionPhase>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">

 </ds:SignatureMethod>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>…here hash value for authentication …</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>… here authentication signature…</ds:SignatureValue>

 </AuthSignature>

 <body>

 <TransferReceipt authenticate="true">

 <ReceiptCode>0</ReceiptCode>

 </TransferReceipt>

 </body>

</ebicsRequest>

Diagram 57: EBICS request for the acknowledgement of download data

 Transmission of the following data in the EBICS response (see example in Diagram 58)

- Bank-technical return code (ebicsResponse/body/ReturnCode)

- Technical return code (ebicsResponse/header/mutable/ReturnCode)

- Technical report text (ebicsResponse/header/mutable/ReportText)

- Data for identification of a transaction step:

If the technical return code has the value EBICS_TX_RECOVERY_SYNC, this

transaction step identifies the last recovery point of the download transaction. However,

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 132

 Status: Final Version 3.0

if no technical or business related errors have occurred, this transaction step reflects the

current transaction step, i.e. acknowledgement of the download data:

- Transaction ID (ebicsResponse/header/static/TransactionID)

- Transaction phase (ebicsResponse/header/mutable/TransactionPhase)

- (Conditional) Serial number of the order data segment

(ebicsResponse/header/mutable/SegmentNumber) if the error

EBICS_TX_RECOVERY_SYNC has occurred and consequently the value of

TransactionPhase is “Initialisation” or “Transfer”.

This is the number of the order data segment that, from the bank system’s perspective,

was the last one to have been successfully transmitted to the customer system. The value

of SegmentNumber is always equal to 1 if the value of TransactionPhase is

“Initialisation”.

The attribute ebicsResponse/header/mutable/SegmentNumber@lastSegment

specifies whether it is the last order data segment.

- Identification and authentication signature of the financial institution

(ebicsResponse/AuthSignature)

The identification and authentication signature includes all XML elements of the EBICS

response whose attribute value for @authenticate is equal to “true”. The definition of

the XML schema “ebics_response_H005.xsd“ guarantees that the value of the attribute

@authenticate is equal to “true” for precisely those elements that also need to be

signed.

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_response_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Receipt</TransactionPhase>

 <ReturnCode>011000</ReturnCode>

 <ReportText>[EBICS_POSTPROCESS_DONE] positive receipt received </ReportText>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">

 </ds:SignatureMethod>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>… here hash value for authentication</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>… here authentication signature…</ds:SignatureValue>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 133

 Status: Final Version 3.0

 </AuthSignature>

 <body>

 <ReturnCode authenticate="true">000000</ReturnCode>

 </body>

</ebicsResponse>

Diagram 58: EBICS response for the acknowledgement of download data

5.6.1.1.4 Download Request Structure for Business Transaction Formats (BTF)

The standard process is described in chapter 5.6.1. The values of the order parameters are

positioned in ebicsRequest/header/static/OrderDetails

of the type BTDOrderParams which is usable in the upload direction and with order type

“BTD”:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 134

 Status: Final Version 3.0

Diagram 59: BTF structure for download (using restricted service type)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 135

 Status: Final Version 3.0

XML element/

attribute

Data type # Meaning Example

BTDOrderParams ebics:BTDParamsTy

pe (complex)

1 Required to qualify an

download business

transaction and the

used/corresponding

format

- (complex)

Service RestrictedService

Type (complex)

1 Indicates the target

system (nature)/process

to handle the

Transaction/File

- (complex)

ServiceName ebics:
ServiceNameString

Type (simple) -

restriction base:

minLength value="3"

maxLength value="3"

pattern = [A-Z0-9]

1 Name of the service ServiceName

is subject to an

external code

list

(maintained by

EBICS) -

Example:

“REP” =

Report

Scope ebics:
ScopeStringType

(simple)

restriction base:

minLength value="2"

maxLength value="3"

0..1 Specifies whose rules

have to be taken into

account for the service.

This means which market

/ community defined the

rules. External scope

name list specified and

maintained by EBICS. A

missing scope element

means globally accepted

rules.

Scope is

subject to an

external code

list

(maintained by

EBICS).

2-char country

codes

3-char codes

for other

scopes

“BIL” means

bilaterally

agreed

The meaning

of a missing

Scope element

is global.

Instead of a

missing scope

element it can

also be

provided as

code “GLB”.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 136

 Status: Final Version 3.0

ServiceOption ebics:CodeStringT

ype (simple)

restriction base:

minLength value="3"

maxLength value="6"

pattern = [A-Z0-9]

0..1 Optional characteristic(s)

of a service

ServiceOption

is subject to

external code

lists (global,

market,

bilateral)

Example:

“B2B” means

in the context

of

ServiceName

= “REP”: The

report only

contains

information

about B2B

debits

Container ebics:ContainerFl

agType

0..1 Flag to indicate the use of

a container

Only value

true allowed.

No presence

means false

Container@cont

ainerType

ebics:Containerst

ringType (simple)

restriction base:

minLength value="3"

maxLength value="3"

pattern = [a-z]

1..1 Indicates what type of

container is used.

If the container

Flag is

present, one of

the internal

values has to

be used

(internal code

list)

“XML”

“ZIP”

“SVC”

MsgName ebics:

MessageNameString

Type

(simple)

restriction base:

minLength value="1"

maxLength

value="10"

pattern = [a-z\.0-9]

1 message names starting

with a BA code (ISO) or

MT (FIN) or string to be

evaluated

 “pain.002”,

“mt940”

Message

names (issued

by markets,

specified in

“scope”) are

also allowed

MsgName@versio

n

ebics:NumString

(simple)

restriction base:

minLength value="2"

maxLength value="2"

pattern = [0-9]

0..1 Used ISO version of

message, ignored if no

ISO message name

“03”

MsgName@varian

t

ebics:NumString

(simple)

restriction base:

minLength value="3"

0..1 Evaluated together with

<MsgName>, ignored if

no ISO message name

“001”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 137

 Status: Final Version 3.0

maxLength value="3"

pattern = [0-9]

MsgName@format ebics:CodeString

(simple)

restriction base:

minLength value="1"

maxLength value="4"

pattern = [A-Z0-9]

0..1 Evaluated together with

<MsgName>, admissible

for each kind of message

name, but only to be used

if it is not the standard

format for the used

message standard

(especially non-XML for

ISO 20022).

„XML“,

„ASN1“,

„JSON“, „PDF“

dateRange DateRangeType

(complex)

0..1 Specifies a date range for

data in the requested

message

start DateType 1 Start date (incl.) 2016-10-11

end DateType 1 End date (incl.) 2016-10-11

Parameter 0..1 Generic oder params:

Any number of Name-

Value pairs can be

specified

Name boolean 1..1 Name of parameter

Value anySimpleType 1..1 Value of parameter

Value@type NCName 1..1 Type of value Recommen-

dation for a

default is

string

5.6.1.2 Processing the EBICS messages

Chapter 5.6.1.1 describes the contents of the EBICS messages that are exchanged within

the framework of a download transaction. The subject of this chapter is the processing of

these EBICS messages. Action sequences are pointed out in the flow diagram in Diagram

52, the course of which is described here in greater detail.

In order to simplify the description of the processes, it is assumed that every processing

step produces a return code (RC) whose value is equal to EBICS_OK (000000) if it has

been possible to successfully complete this step. The technical return code (RCT) and the

bank-technical return code (RCF) are set depending on the RC, and their values then flow

into EBICS messages.

The validity of the EBICS requests is verified on the basis of the XML schema definition file

“ebics_request_H005.xsd”, and with due regard to the restrictions that have been specified

for the individual requests in Chapter 5.6.1.1. The validity verification usually takes place in

parallel and/or interlocked with the other steps in processing the EBICS request. The

following processes dispense with representation of a process step of type “EBICS request

validity verification” in favour of the simplest possible representation. In consequence, these

processes can be terminated by the following additional technical errors:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 138

 Status: Final Version 3.0

EBICS_INVALID_XML, EBICS_INVALID_REQUEST, or

EBICS_INVALID_REQUEST_CONTENT. For Return codes relating to CA-issued

certificates, refer to Annex 1

.

5.6.1.2.1 Processing in the initialisation phase

Diagram 60 shows processing at the bank’s end of the EBICS request which is sent from

the customer system to the bank system in the initialisation stage of a download

transaction. The individual processing steps are explained in greater detail in the following

text:

I. Generation of an EBICS transaction (see 5.5.1.2.1 Point 1 and Diagram 44)

II. Termination of the EBICS transaction

If the requested download data is not available, the EBICS transaction is terminated with

the business related return code EBICS_NO_DOWNLOAD_DATA_AVAILABLE.

III. Provision of data

In this processing step the first order data segment is provided for the purpose of being

embedded in the EBICS response. If the financial institution uses the bank-technical ES’s

for the current order type and the current subscriber (submitter), the financial institution’s

bank-technical ES’s are also provided via the order data.

In Version “H005” of the EBICS protocol the ES of the financial institutions is only planned

(see Chapter 3.5.2). They are only taken into consideration here in preparation for future

EBICS versions.

The provision of download data is not a part of EBICS, it is dependent on the

implementation of the bank system.

IV. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer

system. If all previous processing steps have been successful, this EBICS message

contains the first order data segment and possibly also the bank-technical signature for the

(entire) order data. In the event of an error, this EBICS message contains the

corresponding technical or business related error code. The contents of this EBICS

message are described in greater detail in Chapter 5.6.1.1.1.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 139

 Status: Final Version 3.0

Receiving EBICS request

Supply of the following data:
1st order data segment,

planned: order-related EU of the credit institute

RCT = 0

RCF = EBICS_NO_DOWNLOAD_DATA_AVAILABLE

EBICS response creation

[Download data

available]

RCT = 0

RCF = 0

Sending EBICS response

Creation of an EBICS transaction

EBICS transaction closure

(release of resources)

[No download data

available]

[RCT = 0 and RCF = 0]

else

Diagram 60: Processing the EBICS request of the initialisation phase of a download
transaction

5.6.1.2.2 Processing in the data transfer phase

Diagram 62 shows processing at the bank’s end of the EBICS request which is transferred

from the customer system to the bank system in the data transfer stage of an EBICS

transaction. The individual processing steps are explained in greater detail in the following

text:

I. Verifying the download transaction (see Diagram 61)

I.a. Verifying the EBICS transaction (see 5.5.1.2.2 Point 1 and Diagram 46)

I.b. Evaluation of the EBICS transaction verification results

If the transaction step verification is unsuccessful, then:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 140

 Status: Final Version 3.0

 A verification is carried out as to whether the download transaction can be
recovered, if the bank system supports the recovery of transactions. This verification is
carried out in accordance with the description in Chapter 5.6.2. If the verification is
successful, the technical return code EBICS_TX_RECOVERY_SYNC is returned,
otherwise the transaction is terminated with the technical return code
EBICS_TX_ABORT.

 The download transaction is terminated with the business related error code
EBICS_RECOVERY_NOT_SUPPORTED if the bank system does not support
transaction recovery. If MAX is set to 0 in the flow diagram, the case is also considered
where recovery is not supported.

II. Provision of data

In this processing step the requested order data segment is provided for the purpose of

being embedded in the EBICS response. The provision of download data is not a part of

EBICS, it is dependent on the implementation of the bank system.

III. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer

system. If all previous processing steps have been successful, this EBICS message

contains the order data segment that was requested in the corresponding EBICS request.

In the event of an error, this EBICS message contains the corresponding technical business

related error code. The contents of this EBICS message are described in greater detail in

Chapter 5.6.1.1.2.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 141

 Status: Final Version 3.0

EBICS transaction abort

(release of resources)

[RC ≠ 0]

[RecoveryCounter

== MAX]

RCT = EBICS_TX_ABORT

RCF = 0

RCT = EBICS_TX_RECOVERY_SYNC

RCF = 0;

RecoveryCounter++

[RecoveryCounter

< MAX]
Invalid Txstep

Valid

Txstep

[RecoveryCounter

== MAX]

[RecoveryCounter

< MAX]

RecoveryCounter++

EBICS transaction verification

Download transaction verification

[RC = 0]

[RCT = 0 and RCF = 0]

[else]

Diagram 61: Detailed description of the process step “Download transaction verification”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 142

 Status: Final Version 3.0

Supply of the requested

order data segment

EBICS response creation

Sending EBICS response

Receiving EBICS request

Download transaction verification

RCT = 0

RCF = 0

[RCT = 0 and RCF = 0]

[else]

Diagram 62: Processing an EBICS request for requesting a order data segment

5.6.1.2.3 Processing in the acknowledgement phase

Diagram 63 shows processing at the bank’s end of the EBICS request which is transferred

from the customer system to the bank system in the acknowledgement stage of an EBICS

transaction.

The individual processing steps are explained in greater detail in the following text:

I. Verifying the download transaction (see description in Chapter 5.6.1.2.2, Point 1)

II. Download post-processing

Positive acknowledgement means that it was possible to successfully download and

process the order data from the customer system. In contrast to negative

acknowledgement, the consequence of this is that finishing-off activities can now be carried

out on the bank system such as e.g. marking the order data as “downloaded”. The EBICS

transaction is terminated by the bank system, independent of the type of acknowledgement.

III. Termination of the EBICS transaction

IV. Generation of the EBICS response

This processing step generates the EBICS response that is afterwards sent to the customer

system. In the event of positive acknowledgement, the technical return code

EBICS_DOWNLOAD_POSTPROCESS_DONE is returned, in the event of negative

acknowledgement the technical return code

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 143

 Status: Final Version 3.0

EBICS_DOWNLOAD_POSTPROCESS_SKIPPED is returned. In the event of an error, this

EBICS message contains the corresponding technical or business related error code. The

contents of this EBICS message are described in greater detail in Chapter 5.6.1.1.3.

RCT = EBICS_DOWNLOAD_POSTPROCESS_SKIPPED

RCF = 0

„Negative“ receipt

EBICS transaction closure

(release of resources)

„Positive“ receipt

RCT = EBICS_DOWNLOAD_POSTPROCESS_DONE

RCF = 0

Sending EBICS response

Download Postprocessing

Receiving EBICS request

Download transaction verification

EBICS response creation

RCT = 0

RCF = 0

[RCT = 0 and RCF = 0]

else

Diagram 63: Processing of an EBICS request for acknowledgement within the framework of
a download transaction

5.6.2 Recovery of download transactions

Recovery of download transactions is always initiated by the customer system. The reasons

for a recovery are analogous to those of upload transactions:

 Transport error during transmission of an EBICS request in the data transfer or

acknowledgement phase of the transaction

 Timeout or transport error when receiving an EBICS transaction in the data transfer or

acknowledgement phase of the transaction

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 144

 Status: Final Version 3.0

 Loss at the subscriber’s end of order data segments that have already been received

 Temporary error in the processing of a received EBICS response that necessitates

renewed transmission.

If one of the above error situations occurs, the customer system selects a suitable recovery

point depending on the number of available order data segments at the subscriber’s end. If

the selected recovery point is the request for the nth order data segment, then the next

transaction step initiated by the subscriber is the request for the (n+1)th order data segment

or acknowledgement of the download of all order data segments if n is the last order data

segment. EBICS requests within the framework of the recovery of download transactions do

not differ from the EBICS request of a normal, error-free flow of a download transaction.

By way of example, the flow of a transaction that repeatedly necessitates recovery is shown

in Diagram 64. In each case, the recovery takes place without explicit synchronisation

between the customer system and the bank system. The 3rd order data segment is

requested three times since the customer system could not receive the corresponding

EBICS response due to a timeout or a transport error. On the second and third request of

the 3rd order data segment, the customer system assumes that the recovery point is the

request for the 2nd order data segment. The value of the recovery counter is equal to 2 after

the third (and successful) request of the 3rd order data segment, since the last two requests

of the 3rd order data segment were evaluated as recovery attempts by the bank system.

The transaction finally fails due to the number of recovery attempts being too high.

If the selected recovery point is not valid from the viewpoint of the bank system, the EBICS

response contains the last possible recovery point of the download transaction in addition to

the technical return code EBICS_TX_RECOVERY_SYNC. The valid recovery points of a

download transaction are defined in Chapter 5.4. If, for example, the selected recovery

point is the request for the order data segment with serial number k, the transaction can be

continued with the request for the order data segments with serial numbers I+1, I+2,

wherein i <= k must hold. If i < k, the ith order data segment is requested again, then the

counter for the number of implemented recovery attempts is incremented by one.

Diagram 65 shows the successful flow of a transaction that contains a recovery of the

transaction after an explicit synchronisation between the customer system and the bank

system. Here, the customer system requests the 5th order data segment in one state

without having previously requested the 4th order data segment. The financial institution’s

EBICS response (see Diagram 66) thus contains the recovery point of the transaction,

which in this case is the request of the 3rd order data segment. Following this, the customer

system continues with the request of the 4th order data segment and ends the transaction

after receipt of the last segment 5.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 145

 Status: Final Version 3.0

Transport layer

ok, transfer of data segment 2

Customer system Bank system

transfer request for data segment 2 for transaction xxx

transfer request for data segment 3 for transaction xxx

Transmission failure, timeout

1. transfer request retry for data segment 3 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx, transfer of data segment 1

Transmission failure, Timeout

2. transfer request retry for data segment 3 for transaction xxx

ok, transfer of data segment 3

RecoveryCounter == 0,

recovery points:

initialisation

RecoveryCounter == 0,

recovery points:

initialisation,

transfer/ segment 2

RecoveryCounter == 1,

recovery points:

initialisation,

transfer/ segment 2

RecoveryCounter == 2 ==MAX ,

recovery points:

initialisation,

transfer/ segment 2

transfer/ segment 3

transfer request for data segment 4 for transaction xxx

Transmission failure, Timeout

1. transfer request retry for data segment 4 for transaction xxx

system-related error return code: EBICS_TX_ABORT

RecoveryCounter == 2 == MAX,

recovery points:

initialisation,

transfer/ segment 2,

transfer/ segment 3

RecoveryCounter == 0,

recovery points:

initialisation,

transfer/ segment 2

Diagram 64: Termination of the recovery of a download transaction due to the maximum
number of recovery attempts being exceeded

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 146

 Status: Final Version 3.0

ok, transfer of data segment 3

Customer system Bank system

transfer request for data segment 3 for transaction xxx

transfer request for data segment 5 (> 4) for transaction xxx

transfer request for data segment 4 for transaction xxx

transaction initialisation

ok, unique transaction ID = xxx, transfer of data segment 1

system-related return code: EBICS_TX_RECOVERY_SYNC,

recovery point: transfer/ data segment 3

ok, transfer pf data segment 4

ok, transfer of data segment 2

transfer request for data segment 2 for transaction xxx

transfer request for data segment 5 for transaction xxx

ok

Transport layer

RecoveryCounter == 0,

recovery points:

initialisation

RecoveryCounter == 0,

recovery points:

initialisation,

transfer/ segment 2

RecoveryCounter == 1,

recovery points:

initialisation,

transfer/ segment 2,

transfer/ segment 3

RecoveryCounter == 0,

recovery points:

initialisation,

transfer/ segment 2,

transfer/ segment 3

RecoveryCounter == 1,

recovery points:

initialisation,

transfer/ segment 2,

transfer/ segment 3,

transfer/ segment 4

RecoveryCounter == 1,

recovery points:

initialisation,

transfer/ segment 2,

transfer/ segment 3,

transfer/ segment 4,

transfer/ segment 5

transfer of data segment 5 for transaction xxx

ok

receipt for transaction xxx (acknowledgement)

Diagram 65: Recovery of a download transaction with explicit synchronisation between
customer system and bank system

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 147

 Status: Final Version 3.0

<?xml version="1.0" encoding="UTF-8"?>

<ebicsResponse

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_response_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static> <TransactionID>FEDCBA41394644363445313243FEDCBA</TransactionID>

 </static>

 <mutable>

 <TransactionPhase>Transfer</TransactionPhase>

 <SegmentNumber lastSegment="false">3</SegmentNumber>

 <ReturnCode>061101</ReturnCode>

 <ReportText>[EBICS_TX_RECOVERY_SYNC] Synchronisation necessary</ReportText>

 </mutable>

 </header>

 <AuthSignature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256">

 </ds:SignatureMethod>

 <ds:Reference URI="#xpointer(//*[@authenticate='true'])">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

 <ds:DigestValue>… here hashvalue for authentication …</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>… here authentication signature …</ds:SignatureValue>

 </AuthSignature>

 <body>

 <ReturnCode authenticate="true">000000</ReturnCode>

 </body>

</ebicsResponse>

Diagram 66: EBICS response with technical error EBICS_TX_RECOVERY_SYNC

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 148

 Status: Final Version 3.0

6 Encryption

EBICS provides encryption on two different protocol levels: On the level of the EBICS XML-

based application protocol and on a level between the application and transport level,

namely the TLS level.

6.1 Encryption at TLS level

The use of TLS on the external transmission paths between the customer system and the

bank system ensures maintenance of the confidentiality and integrity of the EBICS

messages on these paths. The cryptographic processes that are used to establish a TLS

session between the customer system and the bank system are described in the Appendix

(Chapter 11.3.1).

6.2 Encryption at application level

The order data of bank-technical orders are fundamentally deemed to be sensitive and are

therefore embedded into EBICS messages in encrypted form. This facilitates maintenance

of their confidentiality on the internal paths of the customer system and the bank system on

which communication is not necessarily based on TLS.

The order data of system-related key management orders is encrypted as soon as the

recipient’s (sufficiently verified) encryption key is available to the sender of the order data.

The order data of INI or HIA orders is thus embedded into the EBICS message in an

unencrypted form, but the order data of HPB, PUB, HCS, or HCA orders is encrypted.

The order data of system-related Distributed Electronic Signature orders is also embedded

in the EBICS message in encrypted form.

Analogous to the order data of bank-technical orders, the electronic signatures of an order,

i.e. the transport signature or the bank-technical ES’s are always encrypted.

Apart from the order data and the ES’s, no further data is encrypted at the application level.

Order data that is to be encrypted and ES’s of an order are initially compressed via ZIP,

then encrypted and finally base64-coded and embedded in the EBICS message. Here,

compression and subsequent encryption of the order data takes place before it is

segmented. The implemented encryption process is a hybrid process: The data is

symmetrically encrypted, the utilised symmetrical key is passed to the recipient of the data

in asymmetrically-encrypted form. Details on the encryption process are given in the

Appendix (Chapter 11.3.2).

In the event of an upload transaction, a random symmetrical key is generated in the

customer system that is used exclusively within the framework of this transaction both for

encryption of the ES’s and for encryption of the order data. This key is encrypted

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 149

 Status: Final Version 3.0

asymmetrically with the financial institution’s public encryption key and is transmitted by the

customer system to the bank system during the initialisation phase of the transaction.

Analogously, in the case of a download transaction a random symmetrical key is generated

in the bank system that is used for encryption of the order data that is to be downloaded

and for encryption of the bank-technical signature that has been provided by the financial

institution. This key is asymmetrically encrypted and is transmitted by the bank system to

the customer system during the initialisation phase of the transaction. The asymmetrical

encryption takes place with the technical subscriber’s public encryption key if the

transaction’s EBICS messages are sent by a technical subscriber. Otherwise the

asymmetrical encryption takes place with the public encryption key of the non-technical

subscriber, i.e. the submitter of the order.

From EBICS 2.4 on, the customer system has to use the E002-hash value of the public

bank key in a request. This hash value is generated by the customer system according to

the E002 process by means of SHA-256.

The transaction is cancelled and the return code EBICS_INVALID_REQUEST_CONTENT

is returned if E001 is still used in a request.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 150

 Status: Final Version 3.0

7 Segmentation of the order data

7.1 Process description

In Version H005 of the EBICS standard, order data that requires more than 1 MB of storage

space in compressed, encrypted and base64-coded form MUST be segmented before

transmission, irrespective of the transfer direction (upload/download).

The following procedure is to be followed with segmentation:

1. The order data is ZIP compressed

2. The compressed order data is encrypted in accordance with Chapter 6.2

3. The compressed, encrypted order data is base64-coded.

In doing this, only the 65 printable characters of the base64 alphabet from RFC

2045 are permitted in EBICS in the resulting coded data block. In particular, so-

called “white-space characters” such as spaces, tabs, carriage returns and line

feeds (“CR/LF”) are not permitted

4. The result is to be verified with regard to the data volume:

4i. If the resulting data volume is below the threshold of 1 MB = 1,048,576 bytes,

the order data can be sent complete as a data segment within one transmission step

4ii. If the resulting data volume exceeds 1,048,576 bytes the data is to be

separated sequentially and in a base64-conformant manner into segments that each

have a maximum of 1,048,576 bytes.

Step 4i ensures that even order data that does not exceed the permitted maximum segment

size of 1 MB when in compressed, encrypted and coded form is handled uniformly within the

framework of segmentation.

The recipient executes the algorithmic computations in reverse order to recovere the original

order data:

1. The data segment that has just been received is appended (concatenated) to

the already-received data segments

2. The complete data block is base64-decoded

3. The results of the base64-decoding are decrypted in accordance with Chapter

6.2

4. The results of the decryption are ZIP expanded to reveal the original order

data.

7.2 Implementation in the EBICS messages

The sender of the order data numbers the data segments that are generated in accordance

with Chapter 7.1 sequentially in ascending order, beginning with 1.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 151

 Status: Final Version 3.0

The server terminates the connection with the technical error code

EBICS_TX_SEGMENT_NUMBER_EXCEEDED if the client in an upload transaction has

specified the total number of segments that are to be transmitted, as stated in the

initialisation phase, too low in the field ebics/header/static/NumSegments, i.e. if the

following applies to the current transaction step:

 ebicsRequest/header/mutable/SegmentNumber =

ebicsRequest/header/static/NumSegments (from the initialisation phase) and

ebicsRequest/header/mutable/SegmentNumber@lastSegment≠"true", or

 ebicsRequest/header/mutable/SegmentNumber >

ebicsRequest/header/static/NumSegments (from the initialisation phase).

The server terminates the transaction in a regular manner with the technical return code of

severity level ‘info’ EBICS_TX_SEGMENT_NUMBER_UNDERRUN if the client in an upload

transaction has specified the total number of segments that are to be transmitted, as stated

in the initialisation phase, too high in the field

ebicsRequest/header/static/NumSegments, i.e. if the following applies to the current

transaction step:

 ebicsRequest/header/mutable/SegmentNumber <

ebicsRequest/header/static/NumSegments (from the initialisation phase) and

ebicsRequest/header/mutable/SegmentNumber@lastSegment="true".

The server terminates the transaction with the technical error code

EBICS_SEGMENT_SIZE_EXCEEDED if the client in an upload transaction has exceeded

the permitted segment size of 1 MB in the current transaction step.

In the case of download transactions, it is the responsibility of the customer system to

respond to irregularities regarding the number or size of segments:

 If the actual number of transmitted segments up until attribute setting

ebicsRequest/header/mutable/SegmentNumber@lastSegment="true" is lower

than the specification in the initialisation stage on the part of the server, the client SHOULD

nevertheless duly continue the current transaction with the acknowledgement phase.

 If the server exceeds the total number of segments postulated in the initialisation phase,

the client CAN nevertheless continue the transaction by requesting further segments.

Alternatively, or in the event of a disproportionately-large deviation between the actual

segment number and the specified number, the client CAN interrupt the transaction by

sending no further requests.

 If the server exceeds the permitted segment size of 1 MB, the client SHOULD terminate

the transaction.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 152

 Status: Final Version 3.0

8 Electronic Distributed Signature (EDS)

Support by the bank for the Distributed Electronic Signature is compulsory for EBICS-

conformant implementation, i.e. a bank server MUST support the administrative EDS order

types for the . Information as to whether the financial institution supports the optional EDS

order type “HVT” (Retrieve EDS transaction details) is contained in the bank parameters (see

Chapter 9.2.2, Parameter “DistribSigTransactionDetails”).

8.1 Process description

The Distributed Electronic Signature (EDS) allows orders to be authorised by multiple

subscribers, even from different customers, independently of location and time. Here, an

order remains stored in the EDS processing system until via the EDS orders either the

necessary number of signatures with suitable authorisation have been received, a time limit

set by the bank’s computer system has been exceeded or the order is cancelled. Hence the

EDS process is not just an alternative to customer-internal subsequent submission of ES’s

relating to an existing order, it also offers a distributed ES among a number of customers

with comprehensive possibilities for information on the EDS state and the order.

Authorised signatories of a customer can use signature processes deviating from each other

which may support different hash processes resulting in different hash values. In the case of

the EDS process, the hash value of the order data is provided when the administrative order

types HVD and HVZ are executed. This hash value is derived from the signature version

which the subscriber executing HVZ and HVD uses. The hash value is provided with the

signature version used as an attribute.

A complete EDS order process generally proceeds as follows:

1. The order party initiates the order (e.g. a SEPA credit transfer) by transmitting the

order data in an EBICS transaction with a signature flag (this means that he wants to

sign within EBICS) and the attribute RequestEDS (this means that it is possible to

add possibly missing ESs via EDS). . For the signature, the order party can either

immediately bank-technically sign the order (signature class A, B or E) or can initially

carry out the transmission by means of a transport signature (signature class T).

2. The bank system analyses the business transaction identifiers (BTF

identifiers) and signatures that have already been submitted, including their class. If

further signatures are necessary for processing of the order, it is stored intermediately

for the EDS process together with its hash value. The bank system extracts the hash

value of the order data from the ES using the signatory’s public signature key.

3. If another subscriber wants to use the EDS process for this order, they have

possibly already received the data necessary for authorisation – hash value of the

order, BTF identifiers and order number – outside of EBICS (via a third

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 153

 Status: Final Version 3.0

communication path). In this event, the process continues from Point 4. On the other

hand, if they still need the order data they can proceed as follows:

3i. Firstly, they inquire via the administrative order type HVU or HVZ to find out

which orders they are authorised to sign within the framework of EDS. The response

contains, among other things, information on the business transaction (BTF

identifiers), order number, the number of signatures required and already provided

(including a note as to whether their own signature is still required or has already

been provided), on the original order party and on the size of the uncompressed order

data. The HVZ response contains additional information, especially the hash value of

the order data. If HVZ is applied, step 3ii may be skipped.

3ii. Next they ascertain via HVD the state of one of these orders, e.g. the SEPA
credit transfer order placed within the framework of the EDS. In addition to the hash
value of the order data that the bank system has extracted from the order signatory’s
ES and an accompanying note, they receive a list of the previous signatories together
with their authorisation class.

3iii. The subscriber can download additional order details via HVT: Depending on

the request parameters, they receive either information on the individual order

transactions (account data, amount information, processing date, utilisation data and

other descriptions) or the complete order data.

4. The subscriber now has all information needed to sign or cancel the original

order:

4i. If they want to add a signature to the original order, they will use HVE. For

this, they sign the hash value of the order data received via HVD or worked out

themselves from the complete order data via HVT. The HVE control data contains the

order parameters for the original order (e.g. the SEPA credit transfer order).

4ii. If they want to cancel the original order they would use HVS. As with HVE,

authorisation is confirmed by the bank-technical signature via the hash value of the

order data, but in the case of HVS the signature applies as confirmation of the

cancellation, not confirmation of the order itself. As with HVE, the HVS control data

contains the order parameters of the original order (that is to be cancelled).

Diagram 67 documents the processes when using EDS. The diagram shows the logical

concatenation of the EDS order types wherein pure communications connections (e.g. data

transmission from bank system to customer system on retrieval of EDS details via HVD),

occurrences of errors and the acquisition of information via alternative communication

channels (e.g. order hash value by email from the submitter instead of via HVD) are not

shown for reasons of clarity.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 154

 Status: Final Version 3.0

new order

process order

Order party/

initiating party

Credit institute Signer

store incompletely

authorised order in

VEU processing list

[additional ESs

required]

[ES-authorisation

complete]

HVU

[no orders to sign]

HVD

[orders to sign]

[HVT is

supported]

[HVT is not

supported]

HVT
(complete

order data)

HVT
(order details)

[complete order

data requested]

[order details

requested]

[no signature]

HVS
[cancellation]

HVE

[signature of

the order]delete order from

EDS processing list

delete order from

EDS processing list

[hash value

from HVD

or HVZ]

[hash value computed

from order data]

HVZ

[no orders

to sign]

[orders

to sign]

Diagram 67: Flow diagram for EDS

8.2 Technical implementation of the EDS

 A subscriber initiates EDS processing by submitting an order with an insufficient number
of bank-technical signatures of the necessary authorisation class. The order is submitted in
an EBICS transaction with present signature flag and a present attribute RequestEDS . In all
cases, this order must be submitted with a signature (either with a bank-technical signature
of class “A”, “B” or “E”, or with a transport signature of signature class “T”).

 The bank system first verifies the supplied ES(s) and the authorisation of the subscribers
for the order type in question. It then compares the number and signature class of the
supplied ES(s) with the locally-deposited ES requirements for the order type in question. If
signatures are still outstanding, the order is placed in EDS processing together with the ES’s
that have already been provided.

 Information on orders that are currently in EDS processing can be retrieved via EDS
administrative order types “HVU” , “HVZ”, “HVD” and “HVT”. Necessary parameters to
demarcate the original orders are transmitted via the additional order parameters

HVUOrderParams, HVZOrderParams, HVDOrderParams or HVTOrderParams, which

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 155

 Status: Final Version 3.0

are part of the control data for these administrative order types. “HVU”, , “HVZ” “HVD” and
“HVT” are download transactions wherein the reply information is transparently embedded
into the order data field in the form of XML documents. “Transparent” means: The XML
structures are interpreted in binary and are compressed, encoded and coded before
transmission just like the order data of other order types.

 In the case of HVE/HVS, a subscriber can retrieve the necessary data for identification of
the original order (hash value of the order, order type, order number) in the following ways:

- HVU & HVD: With HVU, they retrieve the BTF identifiers and order number, with HVD the

hash value of the order. Here, the hash value originates from the ES of the subscriber that

submitted the order.

- HVZ as an alternative of HVU & HVD: With HVZ, the subscriber retrieves the BTF

identifiers and order number as well as the hash value of the order. The hash value

originates from the submitter's ES of the order.

- HVU & HVT: With HVU, the subscriber retrieves the BTF identifiers and order number as in

the case of „HVU & HVD". With HVT, they can set the switch

completeOrderData="true" in the request (HVTOrderParams) and thus receive the

complete order file. They can work out the hash value themselves from this.

- HVZ & HVT: With HVZ, the subscriber retrieves the BTF identifiers and order number as

well as the hash value of the order as described above. HVT allows him to set the switch

completeOrderData="true" with the request (HVTOrderParams), thus giving him the

opportunity to obtain the complete order file.

- Via an alternative communication channel: The subscriber is at liberty to acquire the

information without the help of the EBICS interface. If they already know the BTF identifiers

and the order number, they can dispense with retrieval via HVU. If they also have the

correct hash value for the order, retrieval via HVD, HVT or HVZ respectively can also be

dispensed with.

 New ES’s can be assigned to the order via the administrative EDS order type HVE. Here,
identification of the original order takes place via the additional order parameters

HVEOrderParams, which are components of the control data for an HVE order. The ES that

is to be supplied for the order data of the original order is transmitted during the initialisation
step. HVE contains one or more ES(s) but no order data.

 As soon as the required number of ES’s with suitable authorisation has been submitted
for the order type in question, the original order is released from EDS processing and
forwarded for further order processing. In this way, the order no longer appears in the return
list of orders to be signed when “HVU” (or HVZ) is next implemented.

 EDS cancellation can be initiated via administrative order type HVS. As with HVE,
identification of the original order takes place via the additional order parameters (here

HVSOrderParams), which are components of the control data for an HVS order. As with

HVE, the authorising ES for the cancellation via order data of the original order is transmitted
in the initialisation step. HVS also contains one or more ES(s) but no order data.
An order cancellation is effective immediately, and always requires one single authorised
signature of class “E”, “A” or “B”. A cancelled order is removed from the EDS processing; it is
not forwarded for further order processing. Furthermore, it is no longer contained in the list of
orders to be signed in the event of a repeated release of “HVU” (or HVZ).

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 156

 Status: Final Version 3.0

8.3 Detailed description of the administrative EDS order types

This chapter will exclusively cover the differences and additions in comparison with EBICS

standard orders (see Chapter 5). No more process flows will be explained (see Chapter 8.1

and 8.2), instead syntax and semantics for each individual administrative EDS order type

(request and response) will be defined for the relevant elements and attributes of the XML

schema, and these will be explained by way of examples.

Definition of the EDS order elements (EDS order parameters and EDS order data) is given in

the XML schema “ebics_orders_H005.xsd”. Type definitions are given, in part, in the XML

schema “ebics_types_H005.xsd”. With the textual representations, the relevant passages

from “ebics_orders_H005.xsd” and “ebics_types_H005.xsd” are listed in summary.

8.3.1 HVU (download EDS overview) and HVZ (Download EDS overview with
additional information)

A subscriber can use HVU to list the orders for which they are authorised as a signatory. As

a filter criterion, they can restrict the list in “request” to specific (groups of) business

transactions (ServiceFilter, 0..n occurences). In addition to the order designation, the

“response” also contains the size of the order data, signature conditions and information on

the initiating party and the previous signatories (OrderDetails).

Apart from all information of HVU the response message of HVZ also contains data of HVD.
Therefore, HVZ ("Download EDS overview with additional information") may be compared to
a combination of HVU with 1 to n HVDs.

HVU and HVZ are administrative order types of the type “download”.

8.3.1.1 HVU request

In the HVU request, the subscriber optionally submits a filter criterion. Only orders whose

BTF identifiers are contained in the submitted in this filter are returned. If the subscriber

does not submit a restriction, they will receive a list of all BTF identifiers for which they are

authorised as a signatory.

Characteristics of OrderParams (order parameters) for HVU: HVUOrderParams

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 157

 Status: Final Version 3.0

8.3.1.1.1 XML schema (graphical representation)

Diagram 68: HVUOrderParams

8.3.1.1.2 XML schema (textual representation)

<element name="HVUOrderParams" type="ebics:HVUOrderParamsType"

substitutionGroup="ebics:OrderParams">

 <annotation>

 <documentation xml:lang="en">additional order parameters for order type

HVU.</documentation>

 </annotation>

 </element>

<complexType name="HVUOrderParamsType">

 <annotation>

 <documentation xml:lang="en">Data type for additional order parameters regarding order

type HVU.</documentation>

 </annotation>

 <sequence>

 <element name="ServiceFilter" type="ebics:ServiceType" minOccurs="0"

maxOccurs="unbounded">

 … (element group ServiceFilter contains a selection of elements) …

 <annotation>

 <documentation xml:lang="en">BTF identifiers for orders ready to be signed by the

requesting user should match; if not specified, a list of all orders ready to be signed by the

requesting user is returned.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

8.3.1.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HVUOrderParams ebics:HVUOrderParamsType

(complex)
1 Order parameters for

administrative order type

HVU

-

(complex)

ServiceFilter ebics:ServiceType

0..n Choose all orders which map

with a specific filter of BTF

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 158

 Status: Final Version 3.0

for this structure refer to

chapter 8.3.6

elements, for which orders

available for signature are to

be retrieved; if not specified,

all orders are retrieved for

which the subscriber is

authorised as a signatory

8.3.1.1.4 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <!-- […] -->

 <OrderDetails>

 <AdminOrderType>HVU</AdminOrderType>

 <HVUOrderParams>

 <ServiceFilter>

 <ServiceName>SCT</ServiceName>

 </ServiceFilter>

 </HVUOrderParams>

 </OrderDetails>

 <!-- […] -->

 </static>

 <!-- […] -->

 </header>

 <!-- […] -->

</ebicsRequest>

8.3.1.2 HVU response

In the HVU response, the subscriber is given information as to the orders for which they are

authorised as signatories.

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HVU: HVUResponseOrderData

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 159

 Status: Final Version 3.0

8.3.1.2.1 XML schema (graphic representation)

Diagram 69: HVUResponseOrderData

Diagram 70: HVUSigningInfoType (to SigningInfo)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 160

 Status: Final Version 3.0

Diagram 71: SignerInfoType (to SignerInfo)

Diagram 72: HVUOriginatorInfoType (to OriginatorInfo)

8.3.1.2.2 XML schema (textual representation)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 161

 Status: Final Version 3.0

 <element name="HVUResponseOrderData" type="ebics:HVUResponseOrderDataType"

substitutionGroup="ebics:EBICSOrderData">

 <annotation>

 <documentation xml:lang="en">Order data for order type HVU (response: receive summary of

orders currently stored in the distributed signature processing unit).</documentation>

 </annotation>

 </element>

 <complexType name="HVUResponseOrderDataType">

 <annotation>

 <documentation xml:lang="en">Data type for order data regarding order type HVU (response:

receive summary of orders currently stored in the distributed signature processing

unit).</documentation>

 </annotation>

 <sequence>

 <annotation>

 <documentation xml:lang="de"/>

 </annotation>

 <element name="OrderDetails" type="ebics:HVUOrderDetailsType" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">Summary of order information.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="HVUOrderDetailsType">

 <annotation>

 <documentation xml:lang="en">Data type for order details regarding order type

HVU.</documentation>

 </annotation>

 <sequence>

 <element name="Service" type="ebics:RestrictedServiceType"/>

… (element group Service contains a selection of elements) …

 <annotation>

 <documentation xml:lang="en">Type of business transaction.</documentation>

 </annotation>

 </element>

 <element name="OrderID" type="ebics:OrderIDType">

 <annotation>

 <documentation xml:lang="en">ID number of the order.</documentation>

 </annotation>

 </element>

 <element name="OrderDataSize" type="positiveInteger">

 <annotation>

 <documentation xml:lang="en">Size in bytes of the order in uncompressed

form.</documentation>

 </annotation>

 </element>

 <element name="SigningInfo" type="ebics:HVUSigningInfoType">

 <annotation>

 <documentation xml:lang="en">Information regarding the signing modalities of the

order.</documentation>

 </annotation>

 </element>

 <element name="SignerInfo" type="ebics:SignerInfoType" minOccurs="0"

maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">Information regarding the users who already signed the

order.</documentation>

 </annotation>

 </element>

 <element name="OriginatorInfo" type="ebics:HVUOriginatorInfoType">

 <annotation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 162

 Status: Final Version 3.0

 <documentation xml:lang="en">Information regarding the originator of the

order.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="HVUSigningInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for information regarding the signing modalities

of orders returned by HVU.</documentation>

 </annotation>

 <attribute name="readyToBeSigned" type="boolean" use="required">

 <annotation>

 <documentation xml:lang="en">Is this order ready to be signed, or has it been signed by

the requesting user already?</documentation>

 </annotation>

 </attribute>

 <attribute name="NumSigRequired" type="positiveInteger" use="required">

 <annotation>

 <documentation xml:lang="en">Minimum number of signatures required for authorisation of

the order.</documentation>

 </annotation>

 </attribute>

 <attribute name="NumSigDone" type="nonNegativeInteger" use="required">

 <annotation>

 <documentation xml:lang="en">Number of signatures already issued for this

order.</documentation>

 </annotation>

 </attribute>

 </complexType>

 <complexType name="SignerInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for information regarding a signer of an order

which is listed by HVU/HVD.</documentation>

 </annotation>

 <sequence>

 <element name="PartnerID" type="ebics:PartnerIDType">

 <annotation>

 <documentation xml:lang="en">Signer's customer ID.</documentation>

 </annotation>

 </element>

 <element name="UserID" type="ebics:UserIDType">

 <annotation>

 <documentation xml:lang="en">Signer's user ID.</documentation>

 </annotation>

 </element>

 <element name="Name" type="ebics:NameType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Signer's name.</documentation>

 </annotation>

 </element>

 <element name="Timestamp" type="ebics:TimestampType">

 <annotation>

 <documentation xml:lang="en">Timestamp of the signature (i.e., the transmission of

the signature).</documentation>

 </annotation>

 </element>

 <element name="Permission">

 <annotation>

 <documentation xml:lang="en">additional information regarding the signature

permissions of a user who signed the order.</documentation>

 </annotation>

 <complexType>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 163

 Status: Final Version 3.0

 <attributeGroup ref="ebics:SignerPermission"/>

 </complexType>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="HVUOriginatorInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for information regarding the originator of an

order returned by HVU.</documentation>

 </annotation>

 <sequence>

 <element name="PartnerID" type="ebics:PartnerIDType">

 <annotation>

 <documentation xml:lang="en">Customer ID of the originator.</documentation>

 </annotation>

 </element>

 <element name="UserID" type="ebics:UserIDType">

 <annotation>

 <documentation xml:lang="en">User ID of the originator.</documentation>

 </annotation>

 </element>

 <element name="Name" type="ebics:NameType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Name of the originator.</documentation>

 </annotation>

 </element>

 <element name="Timestamp" type="ebics:TimestampType">

 <annotation>

 <documentation xml:lang="en">Timestamp of the submission of the order (i.e., the

transmission of the order data).</documentation>

 </annotation>

 </element>

 <any namespace="##targetNamespace" processContents="strict" minOccurs="0"

maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <attributeGroup name="SignerPermission">

 <annotation>

 <documentation xml:lang="en">permission information of a user's digital

signature.</documentation>

 </annotation>

 <attribute name="AuthorisationLevel" type="ebics:AuthorisationLevelType" use="required">

 <annotation>

 <documentation xml:lang="en">Authorisation level of the user who signed the

order.</documentation>

 </annotation>

 </attribute>

 <anyAttribute namespace="##targetNamespace" processContents="strict"/>

 </attributeGroup>

8.3.1.2.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HVUResponse»

OrderData

ebics:HVUResponse»

OrderDataType

(complex)

1 XML order data for

administrative order type

HVU

- (complex)

OrderDetails ebics:HVUOrder»

DetailsType (complex)

1..∞ Order information for

administrative order type

- (complex)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 164

 Status: Final Version 3.0

HVU

Service ebics:RestrictedServ

iceType

for this structure refer to

chapter 8.3.6

1 Kind of business

transaction, identified by

the service structure,

submitted for EDS

OrderID ebics:OrderIDType

(token,

fixLength=4)

1 Order number of the

order submitted for EDS

“OR01”

OrderDataSize positiveInteger 1 Size of the

uncompressed order

data of the order

submitted for EDS in

bytes

123456

SigningInfo ebics:HVUSigning»

InfoType (complex)

1 Information on the

signature modalities

- (complex)

SigningInfo»

@readyToBeSigned

boolean 1 Is the order ready for

signature (true) or

already signed by the

subscriber (false)?

“true”

SigningInfo»

@NumSigRequired

positiveInteger 1 Total number of ES’s

required for activation

4

SigningInfo»

@numSigDone

nonNegativeInteger 1 Number of ES’s already

provided

2

SignerInfo ebics:SignerInfo»

Type (complex)

0..∞ Information on previous

signatories

- (complex)

PartnerID (in

SignerInfo)

ebics:PartnerIDType

(token,

maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Customer ID of the

signatory

“CUSTM001”

UserID (in

SignerInfo)

ebics:UserIDType

(token,

maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Subscriber ID of the

signatory

“USR100“

Name (in SignerInfo) ebics:NameType

(normalizedString)

0..1 Signatory’s name “John Doe“

Timestamp (in

SignerInfo)

ebics:TimestampType

(dateTime)

1 Time stamp of the

signature (i.e.

transmission of the

signature)

“2005-01-31T»

16:30:45.123Z“

Permission - (complex)

1 Additional authorisation

information relating to the

subscriber that acted as

signatory

- (complex)

Permission»

@Authorisation»

Level

ebics:Authorisation»
LevelType

(token, length=1:

"E", "A", "B", "T")

1 Signature authorisation

of the subscriber that

acted as signatory

“A“

OriginatorInfo ebics:HVUOriginator»

InfoType (complex)

1 Information on the

initiating party

- (complex)

PartnerID (in ebics:PartnerIDType 1 Customer ID of the “CUSTM001”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 165

 Status: Final Version 3.0

OriginatorInfo) (token,

maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

initiating party

UserID (in

OriginatorInfo)

ebics:UserIDType

(token,

maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Subscriber ID of the

initiating party

“USR300“

Name (in

OriginatorInfo)

ebics:NameType

(normalizedString)

0..1 Name of the initiating

party

“Ophelia

Originator“

Timestamp (in

OriginatorInfo)

ebics:TimestampType

(dateTime)

1 Time stamp of the

submission (i.e. trans-

mission of the order file)

“2005-01-30T»

15:30:45.123Z“

AdditionalOrderInf

o

Max255Text 0..1 Additonal Information

about the order up to 255

characters (given by the

customer)

e.g. local file

name

8.3.1.2.4 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HVUResponseOrderData

 xmlns="urn:org:ebics:H005"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_orders_H005.xsd">

 <OrderDetails>

 <Service>

<ServiceName>SCT</ServiceName>

<MsgName>pain.001</MsgName>

 </Service>

 <OrderID>OR01</OrderID>

 <OrderDataSize>123456</OrderDataSize>

 <SigningInfo NumSigRequired="4" readyToBeSigned="true" NumSigDone="2"/>

 <SignerInfo>

 <PartnerID>CUSTM001</PartnerID>

 <UserID>USR100</UserID>

 <Name>John Doe</Name>

 <Timestamp>2005-01-31T16:30:45.123Z</Timestamp>

 <Permission AuthorisationLevel="A"/>

 </SignerInfo>

 <SignerInfo>

 <PartnerID>CUSTM002</PartnerID>

 <UserID>USR200</UserID>

 <Name>Jackie Smith</Name>

 <Timestamp>2016-10-11T17:30:45.123Z</Timestamp>

 <Permission AuthorisationLevel="B"/>

 </SignerInfo>

 <OriginatorInfo>

 <PartnerID>CUSTM001</PartnerID>

 <UserID>USR300</UserID>

 <Name>Ophelia Originator</Name>

 <Timestamp>2005-01-30T15:30:45.123Z</Timestamp>

 </OriginatorInfo>

 </OrderDetails>

</HVUResponseOrderData>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 166

 Status: Final Version 3.0

8.3.1.3 HVZ request

In the HVZ request, the subscriber optionally submits a list of order types as a filter criterion.

Only orders whose order type is contained in the submitted list are returned. If the subscriber

does not submit an order type list as a restriction, they will receive a list of all order types for

which they are authorised as a signatory.

Characteristics of OrderParams (order parameters) for HVZ: HVUOrderParams

8.3.1.3.1 XML schema (graphical representation)

Diagram 73: HVZOrderParams

8.3.1.3.2 XML schema (textual representation)

<element name="HVZOrderParams" type="ebics:HVZOrderParamsType"

substitutionGroup="ebics:OrderParams">

 <annotation>

 <documentation xml:lang="en">additional order parameters for order type

HVZ.</documentation>

 </annotation>

 </element>

<complexType name="HVZOrderParamsType">

 <annotation>

 <documentation xml:lang="en">Data type for additional order parameters regarding order

type HVZ.</documentation>

 </annotation>

 <sequence>

 <element name="ServiceFilter" type="ebics:ServiceType" minOccurs="0"

maxOccurs="unbounded">

… (element group ServiceFilter contains a selection of elements) …

 <annotation>

 <documentation xml:lang="en">List of order types that the orders ready to be signed

by the requesting user should match; if not specified, a list of all orders ready to be signed

by the requesting user is returned.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 167

 Status: Final Version 3.0

 </sequence>

 </complexType>

8.3.1.3.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HVZOrderParams ebics:HVZOrderParamsType

(complex)
1 Order parameters for

administrative order type

HVZ

-

(complex)

ServiceFilter ebics: ServiceType

for this structure refer to

chapter 8.3.6

0..1 Choose all orders which map

with a specific filter of BTF

elements, for which orders

available for signature are to

be retrieved; if not specified,

all orders are retrieved for

which the subscriber is

authorised as a signatory

8.3.1.3.4 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <!-- […] -->

 <OrderDetails>

 <AdminOrderType>HVZ</AdminOrderType>

 <HVZOrderParams>

 <ServiveFilter>…</ServiceFilter>

 </HVZOrderParams>

 </OrderDetails>

 <!-- […] -->

 </static>

 <!-- […] -->

 </header>

 <!-- […] -->

</ebicsRequest>

8.3.1.4 HVZ response

In the HVZ response, the subscriber is given information as to the orders for which they are

authorised as signatories.

HVZResponseOrderData contains the complete information of HVUResponseOrderData and

HVDResponseOrderData with the exception of the element "DisplayFile" containing the file

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 168

 Status: Final Version 3.0

display. As with HVD, the order's hash value is extracted from the ES of the first signatory of

the order and is recalculated if the subscriber executing HVZ uses a different signature

process. In order to make this evident, the hash value is provided with an attribute containing

the signature process used.

Only for payment orders additional information of the file display is returned if available:

 total transaction amount for all logical files

 total transaction number for all logical files

 currency (only if identical across all transactions, skip otherwise)

For DTAUS/DTAZV: Ordering party, account number / IBAN and bank code / BIC of the first

transaction of the first logical file

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HVZ: HVZResponseOrderData

8.3.1.4.1 XML-Schema (graphic representation)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 169

 Status: Final Version 3.0

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 170

 Status: Final Version 3.0

Diagram 74: HVZResponseOrderData

Diagram 75 HVZPaymentOrderDetailsStructure

8.3.1.4.2 XML schema (textual representation)

 <element name="HVZResponseOrderData" type="ebics:HVZResponseOrderDataType"

substitutionGroup="ebics:EBICSOrderData">

 <annotation>

 <documentation xml:lang="en">Order data for order type HVZ (response: receive summary of

orders with additional informations currently stored in the distributed signature processing

unit).</documentation>

 </annotation>

 </element>

 <complexType name="HVZResponseOrderDataType">

 <annotation>

 <documentation xml:lang="en">Data type for order data regarding order type HVZ (response:

receive summary of orders with additional informations currently stored in the distributed

signature processing unit).</documentation>

 </annotation>

 <sequence>

 <annotation>

 <documentation xml:lang="en"/>

 </annotation>

 <element name="OrderDetails" type="ebics:HVZOrderDetailsType" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">Summary of order information.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 171

 Status: Final Version 3.0

 </sequence>

 </complexType>

 <complexType name="HVZOrderDetailsType">

 <annotation>

 <documentation xml:lang="en">Data type for order details regarding order type

HVZ.</documentation>

 </annotation>

 <sequence>

 <element name="OrderType" type="ebics:OrderTBaseType">

 <annotation>

 <documentation xml:lang="en">Type of the order.</documentation>

 </annotation>

 </element>

 <element name="OrderID" type="ebics:OrderIDType">

 <annotation>

 <documentation xml:lang="en">ID number of the order.</documentation>

 </annotation>

 </element>

 <element name="DataDigest" type="ebics:DigestType">

 <annotation>

 <documentation xml:lang="en">

 Hash value of the order data.

 </documentation>

 </annotation>

 </element>

 <element name="OrderDataAvailable" type="boolean">

 <annotation>

 <documentation xml:lang="en">

 Can the order file be downloaded in the original format? (HVT with

completeOrderData=true).

 </documentation>

 </annotation>

 </element>

 <element name="OrderDataSize" type="positiveInteger">

 <annotation>

 <documentation xml:lang="de">

 Size of the uncompressed order data (byte count).

 </documentation>

 </annotation>

 </element>

 <element name="OrderDetailsAvailable" type="boolean">

 <annotation>

 <documentation xml:lang="en">

 Can the order details be downloaded as XML document HVTResponseOrderData? (HVT

with completeOrderData=false).

 </documentation>

 </annotation>

 </element>

 <group ref="ebics:HVZPaymentOrderDetailsStructure"

 minOccurs="0">

 <annotation>

 <documentation xml:lang="en">

 Order details related to payment orders only.

 </documentation>

 </annotation>

 </group>

 <element name="SigningInfo" type="ebics:HVUSigningInfoType">

 <annotation>

 <documentation xml:lang="en">

 Information regarding the signing modalities of the order.

 </documentation>

 </annotation>

 </element>

 <element name="SignerInfo" type="ebics:SignerInfoType"

 minOccurs="0" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">

 Information about the already existing signers.

 </documentation>

 </annotation>

 </element>

 <element name="OriginatorInfo"

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 172

 Status: Final Version 3.0

 type="ebics:HVUOriginatorInfoType">

 <annotation>

 <documentation xml:lang="en">

 Information regarding the originator of the order.

 </documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0"

 maxOccurs="unbounded" />

 </sequence>

</complexType>

<group name="HVZPaymentOrderDetailsStructure">

 <annotation>

 <documentation xml:lang="de">

 Struktur mit zusätzlichen Auftragsdetails in

 HVZResponseOrderData für Zahlungsaufträge.

 </documentation>

 <documentation xml:lang="en">

 Structure with additional order details in HVZResponseOrderData

 related to payment orders.

 </documentation>

 </annotation>

 <sequence>

 <element name="TotalOrders" type="nonNegativeInteger"

 minOccurs="0">

 <annotation>

 <documentation xml:lang="de">

 Anzahl der Zahlungssätze über alle logischen Dateien

 entsprechend Dateianzeige.

 </documentation>

 <documentation xml:lang="en">

 Total transaction number for all logical files (from

 dispay file).

 </documentation>

 </annotation>

 </element>

 <element name="TotalAmount" minOccurs="0">

 <annotation>

 <documentation xml:lang="de">

 Summe der Beträge über alle logische Dateien entsprechend

 Dateianzeige.

 </documentation>

 <documentation xml:lang="en">

 Total transaction amount for all logical files (from

 display file).

 </documentation>

 </annotation>

 <simpleType>

 <restriction base="ebics:AmountValueType" />

 </simpleType>

 </element>

 <element name="Currency" type="ebics:CurrencyBaseType"

 minOccurs="0">

 <annotation>

 <documentation xml:lang="de">

 Auftragswährung (nur bei sortenreinen Zahlungen, sonst

 keine Angabe).

 </documentation>

 <documentation xml:lang="en">

 Order currency (only if identical across all

 transactions, skip otherwise).

 </documentation>

 </annotation>

 </element>

 <element name="FirstOrderInfo" minOccurs="0">

 <annotation>

 <documentation xml:lang="de">

 Informationen aus Dateianzeige der ersten logischen

 Datei.

 </documentation>

 <documentation xml:lang="en">

 Order details from display file for first logical file.

 </documentation>

 </annotation>

 <complexType>

 <sequence>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 173

 Status: Final Version 3.0

 <element name="OrderPartyInfo" type="normalizedString"

 minOccurs="0">

 <annotation>

 <documentation xml:lang="de">

 Auftraggeber entsprechend Dateianzeige.

 </documentation>

 <documentation xml:lang="en">

 Order party information (from display file).

 </documentation>

 </annotation>

 </element>

 <element name="AccountInfo" minOccurs="0">

 <annotation>

 <documentation xml:lang="de">

 Erstes Auftraggeberkonto entsprechend

 Dateianzeige.

 </documentation>

 <documentation xml:lang="en">

 First order party account (from display file).

 </documentation>

 </annotation>

 <complexType>

 <sequence>

 <choice maxOccurs="2">

 <element name="AccountNumber">

 <annotation>

 <documentation xml:lang="de">

 Kontonummer (deutsches Format oder

 international als IBAN).

 </documentation>

 <documentation xml:lang="en">

 Account number (German format or

 international as IBAN).

 </documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension

 base="Q1:AccountNumberType">

 <attribute name="international"

 type="boolean" use="optional"

 default="false">

 <annotation>

 <documentation

 xml:lang="de">

 Ist die Kontonummer im

 deutschen Format

 (international=false)

 oder im internationalen

 Format

 (international=true,

 IBAN) angegeben?

 </documentation>

 <documentation

 xml:lang="en">

 Account number given in

 German format

 (international=false) or

 in international format

 (international=true,

 IBAN)?

 </documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="NationalAccountNumber">

 <annotation>

 <documentation xml:lang="de">

 Kontonummer im freien Format.

 </documentation>

 <documentation xml:lang="en">

 Account number in free format.

 </documentation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 174

 Status: Final Version 3.0

 </annotation>

 <complexType>

 <simpleContent>

 <extension

 base="Q1:NationalAccountNumberType">

 <attribute name="format"

 type="token" use="required">

 <annotation>

 <documentation

 xml:lang="de">

 Formatkennung.

 </documentation>

 <documentation

 xml:lang="en">

 Format type.

 </documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 </choice>

 <choice maxOccurs="2">

 <element name="BankCode">

 <annotation>

 <documentation xml:lang="de">

 Bankleitzahl (deutsches Format oder

 international als SWIFT-BIC).

 </documentation>

 <documentation xml:lang="en">

 Bank sort code (German format or

 international as SWIFT-BIC).

 </documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="Q1:BankCodeType">

 <attribute name="international"

 type="boolean" use="optional"

 default="false">

 <annotation>

 <documentation

 xml:lang="de">

 Ist die Bankleitzahl im

 deutschen Format

 (international=false,

 BLZ) oder im

 internationalen Format

 (international=true,

 SWIFT-BIC) angegeben?

 </documentation>

 <documentation

 xml:lang="en">

 Bank sort code given in

 German format

 (international=false) or

 in international format

 (international=true,

 SWIFT-BIC)?

 </documentation>

 </annotation>

 </attribute>

 <attribute name="Prefix"

 type="ebics:BankCodePrefixType"

 use="optional">

 <annotation>

 <documentation

 xml:lang="de">

 nationales Präfix für

 Bankleitzahlen.

 </documentation>

 <documentation

 xml:lang="en">

 National prefix for bank

 sort code.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 175

 Status: Final Version 3.0

 </documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="NationalBankCode">

 <annotation>

 <documentation xml:lang="de">

 Bankleitzahl im freien Format.

 </documentation>

 <documentation xml:lang="en">

 Bank sort code in free format.

 </documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension

 base="Q1:NationalBankCodeType">

 <attribute name="format"

 type="token" use="required">

 <annotation>

 <documentation

 xml:lang="de">

 Formatkennung.

 </documentation>

 <documentation

 xml:lang="en">

 Format type.

 </documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 </choice>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

 </sequence>

</group>

8.3.1.4.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HVZResponse»

OrderData

ebics:HVZResponse»

OrderDataType

(complex)

1 XML order data for

administrative order type

HVZ

- (complex)

OrderDetails ebics:HVUOrder»

DetailsType (complex)

1..∞ Order information for

administrative order type

HVZ

- (complex)

Service ebics:RestrictedServ

iceType

for this structure refer to

chapter 8.3.6

1 Kind of business

transaction, identified by

the service structure,

submitted for EDS

OrderID ebics:OrderIDType

(token,

maxLength=4)

1 Order number of the

order submitted for EDS

“OR01”

DataDigest ebics:DigestType 1 Hash value from the ES - (base64 data)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 176

 Status: Final Version 3.0

(dsig:DigestValue»

Type

base64Binary)

for the signature process

used by the subscriber

according to the

Request-Element User-

ID

DataDigest»

@SignatureVersion

ebics:Signature»Vers

ionType

(token, length=4,

pattern="A\d{3}"

 Version of the signature

process used by the

subscriber according to

the Request-Element

UserID

e.g.

„A005“

OrderDataAvailable boolean 1 Can the order file be

downloaded in the

original format? (HVT

with

completeOrderData=

true)

true

OrderDataSize positiveInteger 1 Size of the

uncompressed order

data of the order

submitted for EDS in

bytes

123456

OrderDetails»

Available

boolean 1 Can the order details be

downloaded as XML

document

HVTResponseOrderData

? (HVT with

completeOrderData=

false)

true

TotalOrders nonNegativeInteger 0..1 Total transaction number

for all logical files (from

dispay file).

15

TotalAmount ebics:AmountValue»

Type

(decimal,

totalDigits=24,

fractionDigits=4)

0..1 Total transaction amount

for all logical files (from

dispay file).

129.00

TotalAmount»

@isCredit

boolean 0..1 Flag for differentiation

between credit notes

(isCredit="true")

and debit notes

(isCredit="false").

(optional use; usable if

identical across all

transactions, skip

otherwise).

“false“

Currency ebics:CurrencyBase»

Type

(token, length=3,

pattern="[A-Z]{3}")

0..1 Order currency (only if

identical across all

transactions, skip

otherwise).

„USD“

FirstOrderInfo (complex) 0..1 Order details from

display file for first logical

- (complex)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 177

 Status: Final Version 3.0

file.

OrderPartyInfo normalizedString 0..1 Order party information

(from display file).

„Arnold Smith“

AccountInfo complex 0..1 - (complex)

- - 1..2 Information about the

account number:

AccountNumber and/or

NationalAccountNumber

-

AccountNumber ebics:AccountNumber»

Type

(token,

maxLength=40,

pattern="\d{3,10}|([

A-Z]{2}\d{2}[A-Za-

z0-9]{3,30}")

1 Account number

(German format or

international format =

IBAN)

„12345678“

AccountNumber»

@international

boolean 0..1 Account number given in

German format

(international=false) or in

international format

(international=true,

IBAN)?

Default="false"

„false“

NationalAccount»

Number

ebics:National»

AccountNumberType

(token,

maxLength=40)

1 Account number in free

format (neither German

nor IBAN)

„123456789012

3456“

NationalAccount»

Number@format

token 1 format type „other“

- - 1..2 Information about Bank

sort code: BankCode

and/or

NationalBankCode

-

BankCode ebics:BankCodeType

(token,

maxLength=11,

pattern="\d{8}|([A-

Z]{6}[A-Z0-9]{2}([A-

Z0-9]{3})?)")

0..1 German Format or

international format (=

SWIFT-BIC).

„50010060“

Note: Element
cannot be
provided in
case of IBAN
Only

BankCode»

@international

boolean 0..1 Bank sort code given in

German format

(BankCode»

@international=

"false") or in

international format

(BankCode»

@international="tr

ue", SWIFT-BIC)?

Default="false"

„false“

NationalBankCode ebics:National»

BankCodeType

(token,

1 Bank sort code in free

format (neither German

„123456789012

“

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 178

 Status: Final Version 3.0

maxLength=30) format nor SWIFT-BIC)

NationalBankCode»

@format

token 1 format type „other“

SigningInfo ebics:HVUSigning»

InfoType (complex)

1 Information on the

signature modalities

- (complex)

SigningInfo»

@readyToBeSigned

boolean 1 Is the order ready for

signature (true) or

already signed by the

subscriber (false)?

“true”

SigningInfo»

@NumSigRequired

positiveInteger 1 Total number of ES’s

required for activation

4

SigningInfo»

@numSigDone

nonNegativeInteger 1 Number of ES’s already

provided

2

SignerInfo ebics:SignerInfo»

Type (complex)

0..∞ Information on previous

signatories

- (complex)

PartnerID (in

SignerInfo)

ebics:PartnerIDType

(token,

maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Customer ID of the

signatory

“CUSTM001”

UserID (in

SignerInfo)

ebics:UserIDType

(token,

maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Subscriber ID of the

signatory

“USR100“

Name (in SignerInfo) ebics:NameType

(normalizedString)

0..1 Signatory’s name “John Doe“

Timestamp (in

SignerInfo)

ebics:TimestampType

(dateTime)

1 Time stamp of the

signature (i.e.

transmission of the

signature)

“2005-01-31T»

16:30:45.123Z“

Permission - (complex)

1 Additional authorisation

information relating to the

subscriber that acted as

signatory

- (complex)

Permission»

@Authorisation»

Level

ebics:Authorisation»
LevelType

(token, length=1:

"E", "A", "B", "T")

1 Signature authorisation

of the subscriber that

acted as signatory

“A“

OriginatorInfo ebics:HVUOriginator»

InfoType (complex)

1 Information on the

initiating party

- (complex)

PartnerID (in

OriginatorInfo)

ebics:PartnerIDType

(token, maxLength=

35, pattern="[a-zA-

Z0-9,=]{1,35})

1 Customer ID of the

initiating party

“CUSTM002”

UserID (in

OriginatorInfo)

ebics:UserIDType

(token,

maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Subscriber ID of the

initiating party

“USR300“

Name (in

OriginatorInfo)

ebics:NameType

(normalizedString)

0..1 Name of the initiating

party

“Ophelia

Originator“

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 179

 Status: Final Version 3.0

Timestamp (in

OriginatorInfo)

ebics:TimestampType

(dateTime)

1 Time stamp of the

submission (i.e. trans-

mission of the order file)

“2005-01-30T»

15:30:45.123Z“

AdditionalOrderInf

o

Max255Text 0..1 Additonal Information

about the order up to 255

characters (given by the

customer)

e.g. local file

name

8.3.1.4.4 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HVZResponseOrderData xmlns="urn:org:ebics:H005"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_orders_H005.xsd">

 <OrderDetails>

 <Service>

<ServiceName>SCT</ServiceName>

<MsgName>pain.001</MsgName>

 </Service>

 <OrderID>OR01</OrderID>

 <DataDigest SignatureVersion="A006">MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTI=

</DataDigest>

 <OrderDataAvailable>true</OrderDataAvailable>

 <OrderDataSize>123456</OrderDataSize>

 <OrderDetailsAvailable>true</OrderDetailsAvailable>

 <TotalOrders>22</TotalOrders>

 <TotalAmount>500.00</TotalAmount>

 <Currency>EUR</Currency>

 <FirstOrderInfo>

 <OrderPartyInfo>Arnold Auftraggeber</OrderPartyInfo>

 <AccountInfo>

 <AccountNumber international="true">

 DE68210501700012345678

 </AccountNumber>

 <BankCode international="false" Prefix="DE">

 21050170

 </BankCode>

 </AccountInfo>

 </FirstOrderInfo>

 <SigningInfo NumSigRequired="4" readyToBeSigned="true"

 NumSigDone="2" />

 <SignerInfo>

 <PartnerID>PARTNER1</PartnerID>

 <UserID>USER0001</UserID>

 <Name>Max Mustermann</Name>

 <Timestamp>2005-01-31T16:30:45.123Z</Timestamp>

 <Permission AuthorisationLevel="A" />

 </SignerInfo>

 <SignerInfo>

 <PartnerID>PARTNER2</PartnerID>

 <UserID>USER0002</UserID>

 <Name>Maxime Musterfrau</Name>

 <Timestamp>2005-01-31T17:30:45.123Z</Timestamp>

 <Permission AuthorisationLevel="B" />

 </SignerInfo>

 <OriginatorInfo>

 <PartnerID>PARTNER1</PartnerID>

 <UserID>USER0001</UserID>

 <Name>Erich Einreicher</Name>

 <Timestamp>2016-10-11T15:30:45.123Z</Timestamp>

 </OriginatorInfo>

 </OrderDetails>

</HVZResponseOrderData>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 180

 Status: Final Version 3.0

8.3.2 HVD (retrieve EDS state)

With HVD, a subscriber can retrieve the state of an order that is currently in EDS processing

and for which the subscriber is authorised as a signatory. They receive information about the

order in the form of an electronic accompanying note (DisplayFile) and the order hash

value (DataDigest) as well as the previous signatories (SignerInfo). The bank system

has extracted the order’s hash value from the ES of the first signatory of the order or it is

recalculated if the subscriber executing HVD is using a different signature process. The data

of the accompanying note MUST correspond in terms of contents with the order data, the

hash value of which is also delivered.

The bank system has to verify whether the subscriber possesses a bank-technical

authorisation of signature (signature class E, A or B) for the order on hand and the order is

still in the signature folder. If the authorisation is missing, the transaction has to be cancelled

and the error code EBICS_DISTRIBUTED_SIGNATURE_AUTHORISATION_FAILED is

issued.

 In case of some underlying administrative order types / business transactions, detailed
information on a specific order in the EDS processing system cannot be retrieved by
means of the transaction HVT. Whether this is possible for the ongoing order or not, is
signalized in the HVD response by the bank system. Before the execution of HVD, the
bank system verifies whether the order is currently located in the EDS processing system
and, in case of an error, terminates the transaction returning the business related error
code EBICS_ORDERID_UNKNOWN.

HVD is an order type of type “download”.

8.3.2.1 HVD request

In the HVD request, the subscriber transfers the relevant data for identification of the order

for which they want to retrieve the EDS state.

Characteristics of OrderParams (order parameters) for HVD: HVDOrderParams

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 181

 Status: Final Version 3.0

8.3.2.1.1 XML schema (graphical representation)

Diagram 76: HVDOrderParams

8.3.2.1.2 XML schema (textual representation)

 <element name="HVDOrderParams" type="ebics:HVDOrderParamsType"

substitutionGroup="ebics:OrderParams">

 <annotation>

 <documentation xml:lang="en">additional order parameters for order type

HVD.</documentation>

 </annotation>

 </element>

 <complexType name="HVDOrderParamsType">

 <annotation>

 <documentation xml:lang="en">Data type for additional order parameters regarding order

type HVD.</documentation>

 </annotation>

 <sequence>

 <group ref="ebics:HVRequestStructure"/>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <group name="HVRequestStructure">

 <annotation>

 <documentation xml:lang="en">Standard request structure for HVx orders (HVD, HVT, HVE,

HVS).</documentation>

 </annotation>

 <sequence>

 <annotation>

 <documentation xml:lang="en">Standard request data.</documentation>

 </annotation>

 <element name="PartnerID" type="ebics:PartnerIDType">

 <annotation>

 <documentation xml:lang="en">Customer ID of the presenter of the selected

order.</documentation>

 </annotation>

 </element>

 <element name="OrderType" type="ebics:OrderTBaseType">

 <annotation>

 <documentation xml:lang="en">Order type of the selected order.</documentation>

 </annotation>

 </element>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 182

 Status: Final Version 3.0

 <element name="OrderID" type="ebics:OrderIDType">

 <annotation>

 <documentation xml:lang="en">Order ID of the selected order.</documentation>

 </annotation>

 </element>

 </sequence>

 </group>

8.3.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HVDOrderParams ebics:HVDOrderParamsType

(complex)

1 Order parameters for

order type HVD

- (complex)

PartnerID ebics:PartnerIDType

(token, maxLength=35,

pattern="[a-zA-Z0-9,=]{1,35})

1 Customer ID of the

initiating party

“CUSTM001”

Service ebics:RestrictedServiceType

for this structure refer to chapter

8.3.6

1 Kind of business

transaction, identified

by the service

structure, submitted

for EDS

OrderID ebics:OrderIDType

(token, fixLength=4)

1 Order number of the

order submitted for

EDS

“OR01”

8.3.2.1.4 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <!-- […] -->

 <OrderDetails>

 <AdminOrderType>HVD</AdminOrderType>

 <HVDOrderParams>

 <PartnerID>PARTNER1</PartnerID>

 <Service>

 <ServiceName>SCT</ServiceName>

 <MsgName>pain.001</MsgName>

 </Service>

 <OrderID>OR01</OrderID>

 </HVDOrderParams>

 </OrderDetails>

 <!-- […] -->

 </static>

 <!-- […] -->

 </header>

 <!-- […] -->

</ebicsRequest>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 183

 Status: Final Version 3.0

8.3.2.2 HVD response

The HVD response contains EDS information relating to the order that the subscriber has

requested in the HVD request. In particular, the hash value of the order data is returned from

the ES of the first signatory, along with the accompanying note. In addition, the information is

contained whether the bank system supports the transaction HVT for the particular order.

The following distinction is made:

 OrderDataAvailable : Download of the complete order file wíth HVT and

completeOrderData=true possible?

 OrderDetailsAvailable : Download of the edited order details in XML format with

HVT and completeOrderData=false possible?

The HVD response provides the subscriber with all data that they require for

acknowledgement of the order via HVE or cancellation via HVS.

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HVD: HVDResponseOrderData

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 184

 Status: Final Version 3.0

8.3.2.2.1 XML schema (graphical representation)

Diagram 77: HVDResponseOrderData

8.3.2.2.2 XML schema (textual representation)

 <element name="HVDResponseOrderData" type="ebics:HVDResponseOrderDataType"

substitutionGroup="ebics:EBICSOrderData">

 <annotation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 185

 Status: Final Version 3.0

 <documentation xml:lang="en">Order data for order type HVD (response: receive the status

of an order currently stored in the distributed signature processing unit).</documentation>

 </annotation>

 </element>

 <complexType name="HVDResponseOrderDataType">

 <annotation>

 <documentation xml:lang="en">Data type for order data of type HVD (response: receive the

status of an order currently stored in the distributed signature processing

unit).</documentation>

 </annotation>

 <sequence>

 <element name="DataDigest" type="ebics:DigestType">

 <annotation>

 <documentation xml:lang="en">Hash value of the order data.</documentation>

 </annotation>

 </element>

 <element name="DisplayFile" type="base64Binary">

 <annotation>

 <documentation xml:lang="en">Accompanying ticket / "display file" (corresponds to the

display file of the customer's journal according to the document "DFÜ-

Abkommen").</documentation>

 </annotation>

 </element>

 <element name="OrderDataAvailable" type="boolean">

 <annotation>

 <documentation xml:lang="de">Can the order file be downloaded in the original format?

(HVT with completeOrderData=true)</documentation>

 </annotation>

 </element>

 <element name="OrderDataSize" type="positiveInteger">

 <annotation>

 <documentation xml:lang="de">Size of the uncompressed order data (byte

count)</documentation>

 </annotation>

 </element>

 <element name="OrderDetailsAvailable" type="boolean">

 <annotation>

 <documentation xml:lang="de">Can the order details be downloaded as XML document

HVTResponseOrderData? (HVT with completeOrderData=false)</documentation>

 </annotation>

 </element>

 <element name="BankSignature" type="ebics:SignatureType" minOccurs="0" maxOccurs="0">

 <annotation>

 <documentation xml:lang="en">Digital signature issued by the bank, covering the hash

value and the accompanying ticket.</documentation>

 </annotation>

 </element>

 <element name="SignerInfo" type="ebics:SignerInfoType" minOccurs="0"

maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">Information about the already existing

signers.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

8.3.2.2.3 Meaning of the XML elements/attributes

XML element/ attribute Data type # Meaning Example

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 186

 Status: Final Version 3.0

HVDResponseOrderData ebics:HVDResponse

»

OrderDataType

(complex)

1 XML order data for order

type HVD

-

(complex)

DataDigest ebics:DigestType

(dsig:DigestValu

e»

Type

base64Binary)

1 Hash value of the order for

the signature process used

by the subscriber according

to the Request-Element

UserID

- (base64

data)

DataDigest»

@SignatureVersion

ebics:Signature»V

ersionType

(token,

length=4,

pattern="A\d{3}"

 Version for the signature

process used by the

subscriber according to the

Request-Element UserID

e.g.

„A006“

DisplayFile base64Binary 1 Accompanying

note/“display file“ for

submitted order

- (base64

data)

OrderDataAvailable boolean 1 Can the order file be

downloaded in the original

format? (HVT with

completeOrderData=tr

ue)

true

OrderDataSize positiveInteger 1 Size of the uncompressed

order data (byte count)

1280

OrderDetailsAvailable boolean 1 Can the order details be

downloaded as XML

document

HVTResponseOrderData?

(HVT with

completeOrderData=fa

lse)

true

BankSignature ebics:SignatureTy

pe

(base64Binary)

0 ES of the financial

institution via hash value

and accompanying note,

planned feature

- (base64

data)

SignerInfo ebics:SignerInfo»

Type (complex)

0..∞ Information on previous

signatories

-

(complex)

For the remaining XML elements and attributes: See order type HVU (Chapter 8.3.1.2).

8.3.2.2.4 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HVDResponseOrderData

 xmlns="urn:org:ebics:H005"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_orders_H005.xsd">

 <DataDigest SignatureVersion="A006">

MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTI=</DataDigest>

 <DisplayFile>…</DisplayFile>

 <OrderDataAvailable>true</OrderDataAvailable>

 <OrderDataSize>1280</OrderDataSize>

 <OrderDetailsAvailable>true</OrderDetailsAvailable>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 187

 Status: Final Version 3.0

 <SignerInfo>

 <PartnerID>CUSTM001</PartnerID>

 <UserID>USR100</UserID>

 <Name>John Doe</Name>

 <Timestamp>2005-01-31T16:30:45.123Z</Timestamp>

 <Permission AuthorisationLevel="A"/>

 </SignerInfo>

 <SignerInfo>

 <PartnerID>CUSTM002</PartnerID>

 <UserID>USR200</UserID>

 <Name>Jackie Smith</Name>

 <Timestamp>2005-01-31T17:30:45.123Z</Timestamp>

 <Permission AuthorisationLevel="B"/>

 </SignerInfo>

</HVDResponseOrderData>

8.3.3 HVT (retrieve EDS transaction details)

HVT provides the subscriber with detailed information about an order from EDS processing

for which the subscriber is authorised as a signatory. Depending on the request

(OrderFlags@completeOrderData), they either receive the complete order file or

account details, implementation deadline, amounts and other descriptions (OrderInfo).

The subscriber can transmit other filter criteria (e.g. for selection of individual orders within an

overall order) via request in the generic key value structure (Parameter).

In the case of some administrative order types / business transactions, it is not possible to

retrieve detailed information by means of OrderFlags@completeOrderData="false".

In this case, the bank system returns the business related error code

EBICS_UNSUPPORTED_REQUEST_FOR_ORDER_INSTANCE. With

OrderDataAvailable and OrderDetailsAvailable in the HVD response, the bank

system signals if an HVT transaction for a specific order within the EDS administration can

be executed.

Before the execution of HVT, the bank system verifies whether the order is currently located

in the EDS processing system and, in case of an error, terminates the transaction returning

the business related error code EBICS_ORDERID_UNKNOWN.

The bank system has to verify whether the subscriber possesses a bank-technical

authorisation of signature (signature class E, A or B) for the order on hand and the order is

still in the signature folder. If the authorisation is missing, the transaction has to be cancelled

and the error code EBICS_DISTRIBUTED_SIGNATURE_AUTHORISATION_FAILED is

issued.

HVT is an administrative order type of the type “download”.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 188

 Status: Final Version 3.0

8.3.3.1 HVT request

In the HVT request, the subscriber specifies the order for which they want to retrieve the

EDS transaction details. In addition, they decide whether they want to have order details

(completeOrderData="false") or the complete order file

(completeOrderData="true") as a response by setting the OrderFlag

completeOrderData.

If completeOrderData="false", the customer system may limit the number of order

details that the bank system is to provide. By means of the attribute fetchLimit for the

element OrderFlags the maximum number of order details to be transmitted can be

defined (a proposal for that is fetchLimit=100). If fetchLimit=0, all order details of an

order are requested.

By means of the attribute fetchOffset the customer system is able to define an offset

position in the original order file. From this position onwards the order details are returned. If

fetchOffset=0, order details are requested from the starting point of the order file.

If the value for fetchOffset is higher than the total number of order details, the business

related error EBICS_INVALID_ORDER_PARAMS is returned.

The generic key value structure (Parameter) is available for further filter criteria.

Characteristics of OrderParams (order parameters) for HVT: HVTOrderParams

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 189

 Status: Final Version 3.0

8.3.3.1.1 XML schema (graphical representation)

Diagram 78: HVTOrderParams

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 190

 Status: Final Version 3.0

8.3.3.1.2 XML schema (textual representation)

 <element name="HVTOrderParams" type="ebics:HVTOrderParamsType"

substitutionGroup="ebics:OrderParams">

 <annotation>

 <documentation xml:lang="en">additional order parameters for order type

HVT.</documentation>

 </annotation>

 </element>

 <complexType name="HVTOrderParamsType">

 <annotation>

 <documentation xml:lang="en">Data type for additional order parameters regarding order

type HVT.</documentation>

 </annotation>

 <sequence>

 <group ref="ebics:HVRequestStructure"/>

 <element name="OrderFlags" type="ebics:HVTOrderFlagsType">

 <annotation>

 <documentation xml:lang="en">Special order flags for orders of type

HVT.</documentation>

 </annotation>

 </element>

 <element ref="ebics:Parameter" minOccurs="0" maxOccurs="unbounded"/>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <group name="HVRequestStructure">

 <annotation>

 <documentation xml:lang="en">Standard request structure for HVx orders (HVD, HVT, HVE,

HVS).</documentation>

 </annotation>

 <sequence>

 <annotation>

 <documentation xml:lang="en">Standard request data.</documentation>

 </annotation>

 <element name="PartnerID" type="ebics:PartnerIDType">

 <annotation>

 <documentation xml:lang="en">Customer ID of the presenter of the selected

order.</documentation>

 </annotation>

 </element>

 <element name="OrderType" type="ebics:OrderTBaseType">

 <annotation>

 <documentation xml:lang="en">Order type of the selected order.</documentation>

 </annotation>

 </element>

 <element name="OrderID" type="ebics:OrderIDType">

 <annotation>

 <documentation xml:lang="en">Order ID of the selected order.</documentation>

 </annotation>

 </element>

 </sequence>

 </group>

 <complexType name="HVTOrderFlagsType">

 <annotation>

 <documentation xml:lang="en">Data type for special order flags regarding order type

HVT.</documentation>

 </annotation>

 <simpleContent>

 <extension base="ebics:OrderIDType">

 <attribute name="completeOrderData" type="boolean" use="required">

 <annotation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 191

 Status: Final Version 3.0

 <documentation xml:lang="en">Are the transaction details to be transmitted as

particular order content information requested for display matters, or in complete order data

file form?</documentation>

 </annotation>

 </attribute>

 <attribute name="fetchLimit" use="required">

 <annotation>

 <documentation xml:lang="de">Limit for the transaction details to be transmitted;

if completeOrderData=false, maximum number of details of a particular order; 0 for unlimited

number of details.</documentation>

 </annotation>

 <simpleType>

 <restriction base="nonNegativeInteger">

 <totalDigits value="10"/>

 </restriction>

 </simpleType>

 </attribute>

 <attribute name="fetchOffset" use="required">

 <annotation>

 <documentation xml:lang="de">Offset position in the orginal order file which marks

the starting point for the transaction details to be transmitted; applies to the sequential

number of a particular order if completeOrderData=false.</documentation>

 </annotation>

 <simpleType>

 <restriction base="nonNegativeInteger">

 <totalDigits value="10"/>

 </restriction>

 </simpleType>

 </attribute>

 <anyAttribute namespace="##targetNamespace" processContents="strict"/>

 </extension>

 </simpleContent>

 </complexType>

 <element name="Parameter">

 <annotation>

 <documentation xml:lang="en">generic key-value parameters.</documentation>

 </annotation>

 <complexType>

 <sequence>

 <element name="Name" type="token">

 <annotation>

 <documentation xml:lang="en">Name of the parameter (=key).</documentation>

 </annotation>

 </element>

 <element name="Value">

 <annotation>

 <documentation xml:lang="en">Value of the parameter.</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="anySimpleType">

 <attribute name="Type" type="NCName" use="required">

 <annotation>

 <documentation xml:lang="en">XML type of the parameter value (proposal for

default is "string").</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 </sequence>

 </complexType>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 192

 Status: Final Version 3.0

 </element>

8.3.3.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HVTOrderParam

s

ebics:HVTOrderParams»

Type (complex)

1 Order parameters for

order type HVT

- (complex)

PartnerID ebics:PartnerIDType

(token, maxLength=35,

pattern="[a-zA-Z0-9,=]{1,35})

1 Customer ID of the

initiating party

“CUSTM001”

Service ebics:RestrictedServiceType

for this structure refer to chapter

8.3.6

1 Kind of business

transaction, identified by

the service structure

OrderID ebics:OrderIDType

(token, fixLength=4)

1 Order number of the

order submitted for EDS

“OR01”

OrderFlags ebics:HVTOrderFlags»

Type (complex)

1 Specific “switch“ for HVT

orders

- (complex)

OrderFlags»

@complete»

OrderData

boolean 1 Should the transaction

details be transmitted as

individual order detailed

information

(@completeOrderDat

a=

"false") or as a

complete order file

(@completeOrderDat

a=

"true")? (Proposal for

default="false")

“false“

OrderFlags»

@fetchLimit

nonNegativeInteger 1 Maximum number of

order details to be

transmitted if

@completeOrderData

=

"false",

"0“ for unlimited number

of details

(Proposal for

default=“100“)

10

OrderFlags»

@fetchOffset

nonNegativeInteger 1 Offset position in the

orginal order file which

marks the starting point

for the transaction

details to be transmitted;

applies to the sequential

number of a particular

order if

20

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 193

 Status: Final Version 3.0

completeOrderData=fals

e.

(Proposal for

default=“0“)

Parameter Reference to global element (complex) 0..∞ Structure for generic key

value parameters with

optional type

specification

- (complex)

8.3.3.1.4 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <!-- […] -->

 <OrderDetails>

 <AdminOrderType>HVT</AdminOrderType>

 <HVTOrderParams>

 <PartnerID>PARTNER1</PartnerID>

 <Service>

 <ServiceName>SCT</ServiceName>

 <MsgName>pain.001</MsgName>

 </Service>

 <OrderID>OR01</OrderID>

 <OrderFlags completeOrderData="false" fetchLimit="50" fetchOffset="0"/>

 </HVTOrderParams>

 </OrderDetails>

 <!-- […] -->

 </static>

 <!-- […] -->

 </header>

 <!-- […] -->

</ebicsRequest>

8.3.3.2 HVT response

Depending on the selection of the attribute completeOrderData at the element

OrderFlags the HVT response contains two different formats for the order specified in the

HVT request.

If the flag completeOrderData=true is set, the customer system requests the download

of order data in the original format. This download is a standard download without any

additional embedding of order data into an XML document, i.e. the order data are transmitted

to the customer system after having been compressed, encrypted and, if required,

segmented.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 194

 Status: Final Version 3.0

If the flag completeOrderData=false is set, the customer system requests the download

of order details in the edited XML format. This comprises an XML document with the root

element HVTResponseOrderData that is transmitted to the customer system after having

been compressed, encrypted and, if required, segmented. In this case, the response stores

the total number of order details of the original order file in the element NumOrderInfos.

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HVT: HVTResponseOrderData

If a subscriber executes HVT, although the bank does not support HVT for the order on

hand, the transaction has to be cancelled and the return code

EBICS_UNSUPPORTED_REQUEST_FOR_ORDER_INSTANCE is to be issued.

8.3.3.2.1 XML schema (graphical representation)

Diagram 79: HVTResponseOrderData

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 195

 Status: Final Version 3.0

Diagram 80: HVTOrderInfoType (to OrderInfo)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 196

 Status: Final Version 3.0

Diagram 81: HVTAccountInfoType (to AccountInfo)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 197

 Status: Final Version 3.0

8.3.3.2.2 XML schema (textual representation)

 <element name="HVTResponseOrderData" type="ebics:HVTResponseOrderDataType"

substitutionGroup="ebics:EBICSOrderData">

 <annotation>

 <documentation xml:lang="en">Order data for order type HVT (response: receive transaction

details of an order currently stored in the distributed signature processing

unit).</documentation>

 </annotation>

 </element>

 <complexType name="HVTResponseOrderDataType">

 <annotation>

 <documentation xml:lang="en">Data type for response with particular order content

information of type HVT (response: receive transaction details of an order currently stored in

the distributed signature processing unit with completeOrderData="false").</documentation>

 </annotation>

 <sequence>

 <element name="NumOrderInfos" type="ebics:NumOrderInfosType">

 <annotation>

 <documentation xml:lang="en">Total number of order infos for the

order</documentation>

 </annotation>

 </element>

 <element name="OrderInfo" type="ebics:HVTOrderInfoType" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">Particular order content information requested for

display matters.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="HVTOrderInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for order information regarding order type

HVT.</documentation>

 </annotation>

 <sequence>

 <element name="OrderFormat" type="ebics:OrderFormatType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Specific order format (e.g. DTAZV).</documentation>

 </annotation>

 </element>

 <element name="AccountInfo" type="ebics:HVTAccountInfoType" minOccurs="2" maxOccurs="3">

 <annotation>

 <documentation xml:lang="en">account-related order details (originator, recipient,

etc.).</documentation>

 </annotation>

 </element>

 <element name="ExecutionDate" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Date of execution of the order.</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="date"/>

 </simpleContent>

 </complexType>

 </element>

 <element name="Amount">

 <annotation>

 <documentation xml:lang="en">Total amount of the order.</documentation>

 </annotation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 198

 Status: Final Version 3.0

 <complexType>

 <simpleContent>

 <extension base="ebics:AmountValueType">

 <attribute name="isCredit" type="boolean" use="optional">

 <annotation>

 <documentation xml:lang="en">Is this a credit or a debit

order?</documentation>

 </annotation>

 </attribute>

 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional">

 <annotation>

 <documentation xml:lang="en">Currency code for the amount.</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="Description" minOccurs="0" maxOccurs="4">

 <annotation>

 <documentation xml:lang="en">Text field to be used for describing the transaction to

a greater extent (purpose, order details, comments).</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="string">

 <attribute name="Type" use="required">

 <annotation>

 <documentation xml:lang="en">Data type for the description.</documentation>

 </annotation>

 <simpleType>

 <restriction base="token">

 <enumeration value="Purpose"/>

 <enumeration value="Details"/>

 <enumeration value="Comment"/>

 </restriction>

 </simpleType>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="HVTAccountInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for account information regarding order type

HVT.</documentation>

 </annotation>

 <complexContent>

 <extension base="ebics:AttributedAccountType"/>

 </complexContent>

 </complexType>

 <complexType name="AttributedAccountType">

 <annotation>

 <documentation xml:lang="en">Data type for detailed account information including the

role assignments present during the transaction</documentation>

 </annotation>

 <sequence>

 <element name="AccountNumber" maxOccurs="2">

 <annotation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 199

 Status: Final Version 3.0

 <documentation xml:lang="en">Account number (German format and/or

international=IBAN).</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="ebics:AccountNumberType">

 <attribute name="Role" type="ebics:AccountNumberRoleType" use="required">

 <annotation>

 <documentation xml:lang="en">Role of the account during the

transaction.</documentation>

 </annotation>

 </attribute>

 <attribute name="Description" type="normalizedString">

 <annotation>

 <documentation xml:lang="en">Textual description of the role the account

plays during the transaction; use only if the corresponding "Role" field is set to

"Other".</documentation>

 </annotation>

 </attribute>

 <attribute name="international" type="boolean" use="optional" default="false">

 <annotation>

 <documentation xml:lang="en">Is the account number specified using the

national=German or the international=IBAN format?</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="BankCode" maxOccurs="2">

 <annotation>

 <documentation xml:lang="en">Bank code (German and/or international=SWIFT-BIC

format).</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="ebics:BankCodeType">

 <attribute name="Role" type="ebics:BankCodeRoleType" use="required">

 <annotation>

 <documentation xml:lang="en">Role of the bank during the

transaction.</documentation>

 </annotation>

 </attribute>

 <attribute name="Description" type="normalizedString">

 <annotation>

 <documentation xml:lang="en">Textual description of the role the bank plays

during the transaction; use only if the corresponding "Role" field is set to

"Other".</documentation>

 </annotation>

 </attribute>

 <attribute name="international" type="boolean" use="optional" default="false">

 <annotation>

 <documentation xml:lang="en">Is the bank code specified using the

national=German or the international=SWIFT-BIC format?</documentation>

 </annotation>

 </attribute>

 <attribute name="Prefix" type="ebics:BankCodePrefixType" use="optional">

 <annotation>

 <documentation xml:lang="en">National=German prefix for bank

codes.</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 200

 Status: Final Version 3.0

 </complexType>

 </element>

 <element name="AccountHolder" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Name of the account holder.</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="ebics:AccountHolderType">

 <attribute name="Role" type="ebics:AccountHolderRoleType" use="required">

 <annotation>

 <documentation xml:lang="en">Role of the account holder during the

transaction.</documentation>

 </annotation>

 </attribute>

 <attribute name="Description" type="normalizedString">

 <annotation>

 <documentation xml:lang="en">Textual description of the role the account

holder plays during the transaction; use only if the corresponding "Role" field is set to

"Other".</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 </sequence>

 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional" default="EUR">

 <annotation>

 <documentation xml:lang="en">Currency code for this account. Default is "EUR", if

omitted.</documentation>

 </annotation>

 </attribute>

 <attribute name="Description" type="ebics:AccountDescriptionType">

 <annotation>

 <documentation xml:lang="en">Description of this account.</documentation>

 </annotation>

 </attribute>

 </complexType>

 <complexType name="AmountType">

 <annotation>

 <documentation xml:lang="en">Data type for an amount including a currency attribute

(defaults to "EUR").</documentation>

 </annotation>

 <simpleContent>

 <extension base="ebics:AmountValueType">

 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional" default="EUR">

 <annotation>

 <documentation xml:lang="en">Currency code, default setting is

"EUR".</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 201

 Status: Final Version 3.0

8.3.3.2.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

NumOrderInfos ebics:NumOrderInfo

sType

1

Total number of particular

orders in the original file

42

OrderInfo ebics:HVTOrderInfo

(complex)

1..∞ Individual order information - (complex)

MsgName ebics:

MessageNameStringT

ype

(simple)

restriction base:

minLength value="1"

maxLength value="10"

pattern = [a-z\.0-9]

0..1 message names starting

with a BA code (ISO) or MT

(FIN) or string to be

evaluated

In the HVT response

MsgName is an optional

informaton

 “pain.001”,

“mt103”

Message names

(issued by

markets,

specified in

“scope”) are

also allowed

MsgName@version ebics:NumString

(simple)

restriction base:

minLength value="2"

maxLength value="2"

pattern = [0-9]

0..1 Used ISO version of

message, ignored if no ISO

message name

“03”

MsgName@variant ebics:NumString

(simple)

restriction base:

minLength value="3"

maxLength value="3"

pattern = [0-9]

0..1 Evaluated together with

<MsgName>, ignored if no

ISO message name

“001”

MsgName@format ebics:CodeString

(simple)

restriction base:

minLength value="1"

maxLength value="4"

pattern = [A-Z0-9]

0..1 Evaluated together with

<MsgName>, admissible

for each kind of message

name, but only to be used if

it is not the standard format

for the used message

standard (especially non-

XML for ISO 20022).

„XML“, „ASN1“,

„JSON“, „PDF“

AccountInfo ebics:HVTAccount»

InfoType (complex)

2..3 Account-related detailed

information on the

individual order (order

party, recipient, opt.

initiating party)

- (complex)

AccountInfo»

@Currency

ebics:CurrencyBase

»

Type

(token, length=3,

pattern="[A-

Z]{3}")

0..1 Currency code of the

account in accordance with

ISO 4217; default = “EUR”

“EUR”

AccountInfo»

@Description

ebics:Account»

DescriptionType

(normalizedString

0..1 Textual description of the

account

“Savings”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 202

 Status: Final Version 3.0

)

ExecutionDate date 0..1 Implementation date of the

individual order in

accordance with ISO 8601

2005-01-31

Amount ebics:AmountValue»

Type

(decimal,

totalDigits=24,

fractionDigits=4)

1 Amount of the individual

order

1234.567

Amount»

@Currency

ebics:CurrencyBase

»

Type

(token, length=3,

pattern="[A-

Z]{3}")

0..1 Currency code of the

individual order amount in

accordance with ISO 4217

“EUR”

Amount»

@isCredit

boolean 0..1 Flag for differentiation

between credit note

(isCredit="true") and

debit note

(isCredit="false")

“false“

Description string 0..4 Text fields for further

description of the order

transaction (purpose, order

details, comment)

“Account no.

2345“

Description»

@Type

token: "Purpose",

"Details",

"Comment")

1 Type of description:

„Purpose“=reason for

payment, „Details“=order

details,

„Comment“=comment

“Purpose“

- - 1..2 Information on the account

number: AccountNumber

and/or

NationalAccountNumber

AccountNumber ebics:AccountNumbe

r» Type

(token,

maxLength=40,

pattern="\d{3,10}|

([A-Z]{2}\d{2}[A-

Za-z0-9]{3,30}")

1 Account number, either in

national (= German) or

international format (IBAN)

„12345678“

AccountNumber»

@Role

ebics:AccountNumbe

r» RoleType

(token:

"Originator",

"Recipient",

"Charges",

"Other")

1 Role of the account within
the payment transaction:
“Originator”=account of the
ordering party,
“Recipient”=account of the
recipient,
“Charges”=account for
charges, “Other”= other
role (see
AccountNumber»

@Description)

“Originator“

AccountNumber»

@Description

normalizedString 0..1 Textual description of the

role of the account within

“Nostro“

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 203

 Status: Final Version 3.0

the payment transaction if

AccountNumber@Role=

"Other" is selected.

AccountNumber»

@international

boolean 0..1 Is the account number

specified in national =

German

(AccountNumber»

@international="fals

e") or in international =

IBAN format

(AccountNumber»

@international="true

")? Default="false"

“false“

NationalAccountN

umber

 1 Account number in free

format (for national account

numbers that correspond to

neither German nor

international standards)

„123456789012

3456“

NationalAccountN

umber»

@Role

ebics:AccountNumbe

r» RoleType

(token:

"Originator",

"Recipient",

"Charges",

"Other")

1 Role of the account within

the transaction:

“Originator”=account of the

ordering party,

“Recipient”=account of the

recipient,

“Charges”=account for

charges, “Other”= other

role (see

AccountNumber»

@Description)

„Originator“

NationalAccountN

umber»

@Description

normalizedString 0..1 Textual description of the

account within the

transaction if

AccountNumber@Role=

"Other" is selected

„Nostro“

National»

AccountNumber»

@format

token 1 Description of the account

number's format

„other“

- - 1..2 Information on the bank

code: BankCode and/or

NationalBankCode

-

BankCode ebics:BankCodeType

(token,

maxLength=11,

pattern="\d{8}|([A

-Z]{6}[A-Z0-

9]{2}([A-Z0-

9]{3})?)")

0..1 Bank code, either in

national (= German) or

international format

(SWIFT)

„50010060“

BankCode@Role ebics:BankCodeRole

»

Type

(token:

"Originator",

1 Role of the financial

institution within the

payment transaction:

„Originator”=ordering bank,

„Recipient”=receiving bank,

“Originator“

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 204

 Status: Final Version 3.0

"Recipient",

"Correspondent",

"Other")

„Correspondent”=

correspondent bank,

„Other“=other role (see

BankCode@Description)

BankCode»

@Description

normalizedString 0..1 Textual description of the

role of the financial

institution within the

payment transaction, if

BankCode@Role="Other

" is selected

“Clearing“

BankCode»

@international

boolean 0..1 Is the bank code specified

in national = German

(BankCode»

@international=

"false") or international =

SWIFT format (BankCode»

@international="true

")? Default="false"

“false“

BankCode@Prefix token, maxLength=2 0..1 National prefix for bank

codes

“DE“

NationalBank»

Code

ebics:National»

BankCodeType

(token,

maxLength=30)

1 Bank code in free format

(neither German format nor

SWIFT-BIC)

„123456789012

“

NationalBank»

Code@Role

ebics:BankCodeRole

»

Type

(token:

"Originator",

"Recipient",

"Correspondent",

"Other")

1 Role of the financial

institution within the

transaction:

„Originator”=ordering bank,

„Recipient”=receiving bank,

„Correspondent”=correspon

dent bank,

„Other“=other role (see

BankCode@Description)

„Originator“

BankCode»

@Description

normalizedString 0..1 Textual description of the

role the financial institution

plays within the transaction,

if

BankCode@Role="Other

" is chosen

„Clearing“

NationalBank»

Code@format

token 1 Format type “other”

AccountHolder ebics:AccountHolde

r»

Type

(normalizedString

)

0..1 Name of the account holder “John Doe“

AccountHolder»

@Role

ebics:AccountHolde

r» RoleType

(token:

"Originator",

"Recipient",

"Presenter",

0..1 Role of the account holder

within the payment

transaction:

„Originator“=ordering party,

„Recipient“=recipient,

“Originator“

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 205

 Status: Final Version 3.0

"Other") „Presenter“=submitting

party of the order,

„Other“=other role (see

AccountHolder»

@Description)

AccountHolder»

@Description

normalizedString 0..1 Textual description of the

role of the account holder

within the payment

transaction if

AccountHolder@Role=

"Other" is selected.

“Trustee“

8.3.3.2.4 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HVTResponseOrderData

 xmlns="urn:org:ebics:H005"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_orders_H005.xsd">

 <NumOrderInfos>42</NumOrderInfos>

 <OrderInfo>

 <AccountInfo Currency="EUR">

 <AccountNumber Role="Originator" international="false">1234567890</AccountNumber>

 <BankCode Role="Originator" international="false" Prefix="DE">50010060</BankCode>

 <AccountHolder Role="Originator">Ophelia Originator</AccountHolder>

 </AccountInfo>

 <AccountInfo Currency="EUR">

 <AccountNumber Role="Recipient" international="false">1122334455</AccountNumber>

 <BankCode Role="Recipient" international="false">50070010</BankCode>

 <AccountHolder Role="Recipient">Ray Recipient</AccountHolder>

 </AccountInfo>

 <ExecutionDate>2005-01-31</ExecutionDate>

 <Amount isCredit="true" Currency="EUR">500.00</Amount>

 <Description Type="Purpose">Test transer</Description>

 </OrderInfo>

</HVTResponseOrderData>

8.3.4 HVE (add electronic signature)

With HVE, the subscriber adds a further bank-technical signature for authorisation to an

order from EDS processing.

The bank system has to verify whether the subscriber possesses a bank-technical

authorisation of signature (not signature class T) for the referenced order. If the authorisation

is missing, the transaction has to be cancelled and the existing return code

EBICS_AUTHORISATION_ORDER_IDENTIFIER_FAILED is issued.

Before HVE is executed, the bank system verifies whether the order is currently located in

the EDS processing system and terminates the transaction in case of an error returning the

business related error code EBICS_ORDERID_UNKNOWN.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 206

 Status: Final Version 3.0

HVE is an administrative order type of type “upload”. Only the ES is transmitted via the hash

value of the order from EDS processing (no order data, no ES for the administrative order

type HVE itself) whereas only the hash value of the EDS processing is signed.

8.3.4.1 HVE request

With the HVE request, the subscriber specifies the order to which they want to add a bank-

technical signature, and supplies this signature in the same request in the XML body element

ebicsRequest/body/DataTransfer/SignatureData in compressed, encrypted and

base64-coded form. An HVE request does not contain any order data, i.e. the XML body

element ebicsRequest/body/DataTransfer/OrderData remains unfilled.

In order to provide the bank-technical signature, the subscriber needs either the hash value

of the original order data (e.g. retrievable via HVD or HVZ) or the order data itself (e.g. via

HVT with completeOrderData="true").

Characteristics of OrderParams (order parameters) for HVE: HVEOrderParams

8.3.4.1.1 XML schema (graphical representation)

Diagram 82: HVEOrderParams

8.3.4.1.2 XML schema (textual representation)

 <element name="HVEOrderParams" type="ebics:HVEOrderParamsType"

substitutionGroup="ebics:OrderParams">

 <annotation>

 <documentation xml:lang="en">additional order parameters for order type

HVE.</documentation>

 </annotation>

 </element>

 <complexType name="HVEOrderParamsType">

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 207

 Status: Final Version 3.0

 <annotation>

 <documentation xml:lang="en">Data type for additional order parameters regarding order

type HVE.</documentation>

 </annotation>

 <sequence>

 <group ref="ebics:HVRequestStructure"/>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <group name="HVRequestStructure">

 <annotation>

 <documentation xml:lang="en">Standard request structure for HVx orders (HVD, HVT, HVE,

HVS).</documentation>

 </annotation>

 <sequence>

 <annotation>

 <documentation xml:lang="en">Standard request data.</documentation>

 </annotation>

 <element name="PartnerID" type="ebics:PartnerIDType">

 <annotation>

 <documentation xml:lang="en">Customer ID of the presenter of the selected

order.</documentation>

 </annotation>

 </element>

 <element name="OrderType" type="ebics:OrderTBaseType">

 <annotation>

 <documentation xml:lang="en">Order type of the selected order.</documentation>

 </annotation>

 </element>

 <element name="OrderID" type="ebics:OrderIDType">

 <annotation>

 <documentation xml:lang="en">Order ID of the selected order.</documentation>

 </annotation>

 </element>

 </sequence>

 </group>

8.3.4.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HVEOrderParams ebics:HVEOrderParamsType

(complex)

1 Order parameters for

order type HVE

- (complex)

PartnerID ebics:PartnerIDType

(token, maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Customer ID of the

initiating party

“PARTNER1”

Service ebics:RestrictedServiceT

ype

for this structure refer to

chapter 8.3.6

1 Kind of business

transaction, identified by

the service structure

OrderID ebics:OrderIDType

(token, fixLength=4)

1 Order number of the

order in EDS

processing

“OR01”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 208

 Status: Final Version 3.0

8.3.4.1.4 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <!-- […] -->

 <OrderDetails>

 <AdminOrderType>HVE</AdminOrderType>

 <OrderID>HO04</OrderID>

 <HVEOrderParams>

 <PartnerID>CUSTM001</PartnerID>

 <Service>

 <ServiceName>SCT</ServiceName>

 <MsgName>pain.001</MsgName>

 </Service>

 <OrderID>OR01</OrderID>

 </HVEOrderParams>

 </OrderDetails>

 <!-- […] -->

 </static>

 <!-- […] -->

 </header>

 <!-- […] -->

</ebicsRequest>

8.3.4.2 HVE response

The HVE response does not contain any EDS-specific data.

8.3.5 HVS (Cancellation of orders in the EDS)

The subscriber uses HVS to permanently cancel an existing order from EDS processing.

Before HVS is executed, the bank system verifies whether the order is currently located in

the EDS processing system and terminates the transaction in case of an error returning the

business related error code EBICS_ORDERID_UNKNOWN.

HVS is an administrative order type of type “upload”. For cancellation authorisation, the ES is

transmitted via the hash value of the order that is to be cancelled (no order data, no ES for

the administrative order type HVS itself).

8.3.5.1 HVS request

The subscriber uses the HVS request to specify the order that is to be cancelled and delivers

the bank-technical signature that is necessary for the cancellation via the hash value of the

order data.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 209

 Status: Final Version 3.0

The bank system has to verify whether the subscriber possesses a bank-technical

authorisation of signature (not signature class T) for the referenced order. If the authorisation

is missing, the transaction will be cancelled and the existing return code

EBICS_AUTHORISATION_ORDER_IDENTIFIER_FAILED is issued.

The signature is transported in compressed, encrypted and base64-coded form in the XML

body element ebicsRequest/body/DataTransfer/SignatureData . The order

cancellation is permanent, and always requires one single authorised signature of class “E”,

“A” or “B”.

In order to provide the bank-technical signature, the subscriber needs either the hash value

of the original order data (e.g. retrievable via HVD or HVZ) or the order data itself (e.g. via

HVT with completeOrderData="true").

Characteristics of OrderParams for HVS: HVSOrderParams

8.3.5.1.1 XML schema (graphic representation)

Diagram 83: HVSOrderParams

8.3.5.1.2 XML schema (textual representation)

 <element name="HVSOrderParams" type="ebics:HVSOrderParamsType"

substitutionGroup="ebics:OrderParams">

 <annotation>

 <documentation xml:lang="en">additional order parameters for order type

HVS.</documentation>

 </annotation>

 </element>

 <complexType name="HVSOrderParamsType">

 <annotation>

 <documentation xml:lang="en">Data type for additional order parameters regarding order

type HVS.</documentation>

 </annotation>

 <sequence>

 <group ref="ebics:HVRequestStructure"/>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 210

 Status: Final Version 3.0

 </complexType>

 <group name="HVRequestStructure">

 <annotation>

 <documentation xml:lang="en">Standard request structure for HVx orders (HVD, HVT, HVE,

HVS).</documentation>

 </annotation>

 <sequence>

 <annotation>

 <documentation xml:lang="en">Standard request data.</documentation>

 </annotation>

 <element name="PartnerID" type="ebics:PartnerIDType">

 <annotation>

 <documentation xml:lang="en">Customer ID of the presenter of the selected

order.</documentation>

 </annotation>

 </element>

 <element name="OrderType" type="ebics:OrderTBaseType">

 <annotation>

 <documentation xml:lang="en">Order type of the selected order.</documentation>

 </annotation>

 </element>

 <element name="OrderID" type="ebics:OrderIDType">

 <annotation>

 <documentation xml:lang="en">Order ID of the selected order.</documentation>

 </annotation>

 </element>

 </sequence>

 </group>

8.3.5.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HVSOrderParams ebics:HVSOrderParamsType

(complex)

1 Order parameters for

order type HVS

- (complex)

PartnerID ebics:PartnerIDType

(token, maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Customer ID of the

initiating party.

“CUSTM001”

Service ebics:RestrictedServiceType

for this structure refer to chapter

8.3.6

1 Kind of business

transaction, identified

by the service

structure

OrderID ebics:OrderIDType

(token, fixLength=4)

1 Order number of the

order that is to be

cancelled in EDS

processing

“OR01”

8.3.5.1.4 Example XML (abridged)

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 211

 Status: Final Version 3.0

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <static>

 <!-- […] -->

 <OrderDetails>

 <AdminOrderType>HVS</AdminOrderType>

 <OrderID>HO05</OrderID>

 <HVSOrderParams>

 <PartnerID>CUST001</PartnerID>

 <Service>

 <ServiceName>SCT</ServiceName>

 <MsgName>pain.001</MsgName>

 </Service>

 <OrderID>OR01</OrderID>

 </HVSOrderParams>

 </OrderDetails>

 <!-- […] -->

 </static>

 <!-- […] -->

 </header>

 <!-- […] -->

</ebicsRequest>

8.3.5.2 HVS response

The HVS response does not contain any EDS-specific data.

8.3.6 Used Service Structures (restricted and not restricted)

The service structure (of type RestrictedServiceType) with optional and mandatory

elements is used for nearly all upload and download requests where BTF information is

needed. Only for the HVU and HVZ request, however, ALL elements in the structure have to

be optional (type of structure is ServiceType). Hence the user can request a list of orders

which map with a specific filter of BTF elements. If the structure is not specified, all orders

are retrieved for which the subscriber is authorised as a signatory.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 212

 Status: Final Version 3.0

Diagram 84: non-restricted BTF service structure only for HVU and HVZ request

For all other requests and all responses including description about the business transaction

format (BTF) the standard restricted service structure is used:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 213

 Status: Final Version 3.0

Diagram 85: “standard” BTF service structure for all other cases

For the meaning of the element/attributes please refer to chapter 5.5.1.1.3.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 214

 Status: Final Version 3.0

9 “Other” administrative EBICS order types

The following sections contain descriptions of the following order types:

 HAA (download retrievable order types)

 HPD (download bank parameter)

 HKD (download customer’s customer and subscriber information)

 HTD (download subscriber’s customer and subscriber information)

HEV (download supported EBICS versions)Information about the support on the part of the

bank (mandatory, optional) see chapter 13.

9.1 HAA (download retrievable business transaction formats BTF)

With HAA, the subscriber may retrieve all kinds of business transaction formats for which

updated customer data are ready for download in the bank system.

HAA is an administrative order type of type “download”.

9.1.1 HAA request

The HAA request does not contain specific data that goes beyond that named in the general

transaction description (see Chapter 5.6.1.1).

9.1.2 HAA response

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HAA: HAAResponseOrderData

9.1.2.1.1 XML schema (graphic representation)

Diagram 86: HAAResponseOrderData

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 215

 Status: Final Version 3.0

9.1.2.1.2 XML schema (textual representation)

 <element name="HAAResponseOrderData" type="ebics:HAAResponseOrderDataType"

substitutionGroup="ebics:EBICSOrderData">

 <annotation>

 <documentation xml:lang="en">Order data for order type HAA (response: receive order types

which provide downloadable data).</documentation>

 </annotation>

 </element>

 <complexType name="HAAResponseOrderDataType">

 <annotation>

 <documentation xml:lang="en">Data type for order data of type HAA (response: receive

order types which provide downloadable data).</documentation>

 </annotation>

 <sequence>

 <element name="OrderTypes" type="ebics:OrderTListType">

 <annotation>

 <documentation xml:lang="en">List of order types which provide downloadable order

data.</documentation>

 </annotation>

 </element>

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

9.1.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HAAResponse»

OrderData

ebics:HAAResponse»

OrderDataType (complex)

1 Order data for

order type HAA

- (complex)

Service ebics:RestrictedServiceTy

pe

for this structure refer to

chapter 8.3.6

0..∞ Kind of business

transaction,

identified by the

service structure

9.2 HPD (download bank parameters)

With HPD, the subscriber can receive information relating to the financial institution’s specific

access (AccessParams) and protocol parameters (ProtocolParams).

The access parameters include:

 URL: URL or IP address for electronic access to the financial institution. The optional

attribute valid_from specifies the commencement of validity (timestamp) of the

specification

 Institute: Designation of the financial institution

 HostID (optional): EBICS host ID of the bank system.

In the case of the protocol parameters, the following information is transmitted:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 216

 Status: Final Version 3.0

 Version: Permitted versions (listed in each case) for EBICS protocol (Protocol),

identification and authentication (Authentication), encryption (Encryption) and

signature (Signature)

 Recovery (optional): Support of transaction recovery of (@supported)

 PreValidation (optional): Support of preliminary verification (@supported). If this

parameter is set, the financial institution merely ensures that the subscriber can transmit

data to the financial institution within the framework of preliminary verification. However,

the financial institution is not obliged to comprehensively verify this data.

 ClientDataDownload (optional): Support of order types HKD (download customer

data) and HTD (download subscriber data) (@supported). See Chapter 9.3 (HKD) and

9.4 (HTD)

 DownloadableOrderData (optional): Support of order type HAA (download retrievable

order types) (@supported). See Chapter 9.1 for details.

The following standard procedure is defined for all optional elements of the protocol

parameters – insofar as not explicitly stated otherwise:

 If the parameter is missing, the subscriber MUST evaluate this as meaning that the

corresponding functionality is not supported, i.e. the result corresponds to

Parameter@supported="false"

 If the parameter is specified, but the attribute is missing, the subscriber MUST evaluate

this as support of the corresponding functionality, i.e. the result corresponds to

Parameter@supported="true”.

This specification simplifies the inter-operability of customer product and bank system: On

the one hand, it is ensured that a financial institution that does not support a function does

not also have to explicitly state that it is “not supported” in the bank parameters. On the other

hand, it is assumed that if a functionality is named then it is also supported, which means

that in this case the @supported flag can be dispensed with.

HPD is an order type of type “download”.

9.2.1 HPD request

The HPD request does not contain specific data that goes beyond that named in the general

transaction description.

9.2.2 HPD response

The HPD response contains the bank parameters, divided into access parameters

(AccessParams) and protocol parameters (ProtocolParams).

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 217

 Status: Final Version 3.0

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HPD: HPDResponseOrderData

9.2.2.1.1 XML schema (graphic representation)

Diagram 87: HPDResponseOrderData

Diagram 88: HPDAccessParamsType (to AccessParams)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 218

 Status: Final Version 3.0

Diagram 89: HPDProtocolParamsType (to ProtocolParams)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 219

 Status: Final Version 3.0

Diagram 90: HPDVersionType (to Version)

9.2.2.1.2 XML schema (textual representation)

 <element name="HPDResponseOrderData" type="ebics:HPDResponseOrderDataType"

substitutionGroup="ebics:EBICSOrderData">

 <annotation>

 <documentation xml:lang="en">Order data for order type HPD (response: receive bank

parameters).</documentation>

 </annotation>

 </element>

 <complexType name="HPDResponseOrderDataType">

 <annotation>

 <documentation xml:lang="en">Data type for order data of type HPD (response: receive bank

parameters).</documentation>

 </annotation>

 <sequence>

 <element name="AccessParams" type="ebics:HPDAccessParamsType">

 <annotation>

 <documentation xml:lang="en">EBICS access parameters.</documentation>

 </annotation>

 </element>

 <element name="ProtocolParams" type="ebics:HPDProtocolParamsType">

 <annotation>

 <documentation xml:lang="en">Parameters regarding the EBICS protocol.</documentation>

 </annotation>

 </element>

 </sequence>

 </complexType>

 <complexType name="HPDAccessParamsType">

 <annotation>

 <documentation xml:lang="en">Data type for HPD's access parameters.</documentation>

 </annotation>

 <sequence>

 <element name="URL" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">institute-specific IP address / URL.</documentation>

 </annotation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 220

 Status: Final Version 3.0

 <complexType>

 <simpleContent>

 <extension base="anyURI">

 <attribute name="valid_from" type="ebics:TimestampType">

 <annotation>

 <documentation xml:lang="en">Start of validity for the given URL /

IP.</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="Institute">

 <annotation>

 <documentation xml:lang="en">Name of the institute.</documentation>

 </annotation>

 <simpleType>

 <restriction base="normalizedString">

 <maxLength value="80"/>

 </restriction>

 </simpleType>

 </element>

 <element name="HostID" type="ebics:HostIDType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">ID of the bank's server.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="HPDProtocolParamsType">

 <annotation>

 <documentation xml:lang="en">Data type for HPD's parameters regarding the EBICS

protocol.</documentation>

 </annotation>

 <sequence>

 <element name="Version" type="ebics:HPDVersionType">

 <annotation>

 <documentation xml:lang="en">Specification of supported versions.</documentation>

 </annotation>

 </element>

 <element name="Recovery" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Parameter denoting the recovery function (recovery of

aborted transmissions).</documentation>

 </annotation>

 <complexType>

 <attributeGroup ref="ebics:OptSupportFlag"/>

 </complexType>

 </element>

 <element name="PreValidation" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Parameter denoting the pre-validation (beyond

transmission of signatures).</documentation>

 </annotation>

 <complexType>

 <attributeGroup ref="ebics:OptSupportFlag"/>

 </complexType>

 </element>

 <element name="X509Data" minOccurs="0">

 <annotation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 221

 Status: Final Version 3.0

 <documentation xml:lang="en">Parameter denoting the X.509

functionality.</documentation>

 </annotation>

 <complexType>

 <attributeGroup ref="ebics:OptSupportFlag"/>

 <attribute name="persistent" type="boolean" use="optional" default="false">

 <annotation>

 <documentation xml:lang="en">Will the user's X.509 data be stored persistently on

server side?</documentation>

 </annotation>

 </attribute>

 </complexType>

 </element>

 <element name="ClientDataDownload" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Parameter denoting the download of customer and user

data (order types HKD/HTD).</documentation>

 </annotation>

 <complexType>

 <attributeGroup ref="ebics:OptSupportFlag"/>

 </complexType>

 </element>

 <element name="DownloadableOrderData" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Parameter denoting the reception of order types which

provide downloadable order data (order type HAA).</documentation>

 </annotation>

 <complexType>

 <attributeGroup ref="ebics:OptSupportFlag"/>

 </complexType>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="HPDVersionType">

 <annotation>

 <documentation xml:lang="en">Data type for HPD's version information.</documentation>

 </annotation>

 <sequence>

 <element name="Protocol">

 <annotation>

 <documentation xml:lang="en">supported protocol versions of EBICS

(H...).</documentation>

 </annotation>

 <simpleType>

 <list itemType="ebics:ProtocolVersionType"/>

 </simpleType>

 </element>

 <element name="Authentication">

 <annotation>

 <documentation xml:lang="en">supported versions of authentication

(X...).</documentation>

 </annotation>

 <simpleType>

 <list itemType="ebics:AuthenticationVersionType"/>

 </simpleType>

 </element>

 <element name="Encryption">

 <annotation>

 <documentation xml:lang="en">supported versions of encryption (E...).</documentation>

 </annotation>

 <simpleType>

 <list itemType="ebics:EncryptionVersionType"/>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 222

 Status: Final Version 3.0

 </simpleType>

 </element>

 <element name="Signature">

 <annotation>

 <documentation xml:lang="en">supported versions of signatures (A...).</documentation>

 </annotation>

 <simpleType>

 <list itemType="ebics:SignatureVersionType"/>

 </simpleType>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <attributeGroup name="OptSupportFlag">

 <annotation>

 <documentation xml:lang="en">optional support flag, default = true.</documentation>

 </annotation>

 <attribute name="supported" type="boolean" use="optional" default="true"/>

 <anyAttribute namespace="##targetNamespace" processContents="strict"/>

 </attributeGroup>

9.2.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HPDResponse»

OrderData

ebics:HPDResponse»

OrderDataType (complex)

1 Order data for order type

HPD

- (complex)

AccessParams ebics:HPDAccessParams»

Type (complex)

1 Access parameters - (complex)

ProtocolParams ebics:HPDProtocol»

ParamsType (complex)

1 Protocol parameters - (complex)

URL anyURI 1..∞ Institute-specific IP address

/ URL

“www.the-

bank.de”

URL@valid_from ebics:TimestampType

(dateTime)

0..1 Commencement of validity

for the specified URL/IP; if

not specified, the URL/IP is

valid with immediate effect

“2005-02-28T»

15:30:45.123Z“

Institute normalizedString,

maxLength=80

1 Financial institution

designation

“The Bank“

HostID ebics:HostIDType

(token,

maxLength=35)

0..1 EBICS bank system ID “EBIXHOST“

Version ebics:HPDVersionType

(complex)

1 Specification of supported

versions

- (complex)

Protocol list<ebics:Protocol»

VersionType>

(list<token,

length=4,

pattern="H\d{3}">)

1 List of supported EBICS

protocol versions

“H005“

Authentication list<ebics:Authentica»

tionVersionType>

(list<token,

length=4,

pattern= "X\d{3}">)

1 List of supported

identification and

authentication versions

“X002”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 223

 Status: Final Version 3.0

Encryption list<ebics:Encryption»

VersionType>

(list<token,

length=4,

pattern="E\d{3}">)

1 List of supported

encryption versions

“E002”

Signature list<ebics:Signature»

VersionType>

(list<token,

length=4,

pattern="A\d{3}">)

1 List of supported ES

versions

“A005 A006“

Recovery - (complex) 0..1 Parameters for recovery

function (recovery of

broken connections); if not

specified, the function is

not supported.

- (complex)

Recovery»

@supported

boolean 0..1 Is recovery supported?

(Default=true)

“true”

PreValidation - (complex) 0..1 Parameters for preliminary

verification; if not specified,

the function is not

supported

- (complex)

PreValidation»

@supported

boolean 0..1 Is preliminary verification

supported? (Default=true)

“true”

X509Data - (complex) 0..1 Parameters for X.509 data;

if not specified, the function

is not supported

- (complex)

X509Data»

@supported

boolean 0..1 Is X.509 data supported?

(Default=true)

“false“

X509Data»

@persistent

boolean 0..1 Is the subscriber’s X.509

data persistently stored at

the server end?

(Default=false)

“false“

ClientData»

Download

- (complex) 0..1 Parameters for

downloading customer and

subscriber data

(HKD/HTD); if not

specified, the function is

not supported

“true”

ClientData»

Download»

@supported

boolean 0..1 Are order types HKD/HTD

supported? (Default=true)

“true”

Downloadable»

OrderData

- (complex) 0..1 Parameters for retrieving

order types for which order

data is available (HAA); if

not specified, the function

is not supported

- (complex)

Downloadable»

OrderData»

@supported

boolean 0..1 Is order type HAA

supported? (Default=true)

“true”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 224

 Status: Final Version 3.0

9.2.2.1.4 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HPDResponseOrderData

 xmlns="urn:org:ebics:H005"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_orders_H005.xsd">

 <AccessParams>

 <URL>http://www.the-bank.de</URL>

 <URL valid_from="2005-02-15T15:30:45.123Z">192.168.0.1</URL>

 <Institute>The Bank</Institute>

 <HostID>EBIXHOST</HostID>

 </AccessParams>

 <ProtocolParams>

 <Version>

 <Protocol>H005</Protocol>

 <Authentication>X002</Authentication>

 <Encryption>E001</Encryption>

 <Signature>A005 A006</Signature>

 </Version>

 <Recovery supported="true"/>

 <PreValidation supported="true"/>

 <X509Data supported="false"/>

 < supported="true"/>

 <DownloadableOrderData supported="true"/>

 </ProtocolParams>

</HPDResponseOrderData>

9.3 HKD (retrieve customer’s customer and subscriber information)

With HKD, the subscriber can retrieve information stored by the bank relating to his company

and all associated subscribers (including themselves).

The bank's response contains a list of the accounts of the customer.

An account is only included in the HKD response if at least one of the following conditions is

complied with:

1. The customer possesses an agreement on the provision of bank statements for the

account.

2. At least one of the customer's subscribers is authorised to sign for the account.

It is not relevant whether the account holder is the same customer the HKD is retrieved for.

HKD is an order type of type “download”.

9.3.1 HKD request

The HKD request does not contain specific data that goes beyond that named in the general

transaction description.

9.3.2 HKD response

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HKD: HKDResponseOrderData

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 225

 Status: Final Version 3.0

9.3.2.1.1 XML schema (graphic representation)

Diagram 91: HKDResponseOrderData

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 226

 Status: Final Version 3.0

Diagram 92: PartnerInfoType (to PartnerInfo)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 227

 Status: Final Version 3.0

Diagram 93: AddressInfoType (to AddressInfo)

Diagram 94: BankInfoType (to BankInfo)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 228

 Status: Final Version 3.0

Diagram 95: AuthOrderInfoType (to OrderInfo)

Diagram 96: UserInfoType (to UserInfo)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 229

 Status: Final Version 3.0

Diagram 97: UserPermissionType (to Permission)

9.3.2.1.2 XML schema (textual representation)

 <element name="HKDResponseOrderData" type="ebics:HKDResponseOrderDataType"

substitutionGroup="ebics:EBICSOrderData">

 <annotation>

 <documentation xml:lang="en">Order data for order type HKD (response: receive customer-

based information on the customer and the customer's users).</documentation>

 </annotation>

 <key name="HKDAccountKey">

 <annotation>

 <documentation xml:lang="de">Key for the identification of the account

</documentation>

 </annotation>

 <selector xpath="./ebics:PartnerInfo/ebics:AccountInfo"/>

 <field xpath="@ID"/>

 </key>

 <keyref name="HKDAccountRef" refer="ebics:HKDAccountKey">

 <annotation>

 <documentation xml:lang="de">Reference to the account identification keys

</documentation>

 </annotation>

 <selector xpath="./ebics:UserInfo/ebics:Permission"/>

 <field xpath="AccountID"/>

 </keyref>

 </element>

 <complexType name="HKDResponseOrderDataType">

 <annotation>

 <documentation xml:lang="en">Data type for order data of type HKD (response: receive

customer-based information on the customer and the customer's users).</documentation>

 </annotation>

 <sequence>

 <element name="PartnerInfo" type="ebics:PartnerInfoType">

 <annotation>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 230

 Status: Final Version 3.0

 <documentation xml:lang="en">Customer data.</documentation>

 </annotation>

 </element>

 <element name="UserInfo" type="ebics:UserInfoType" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">User data.</documentation>

 </annotation>

 </element>

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="PartnerInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for customer data with regard to distributed

signatures (order types HKD, HTD).</documentation>

 </annotation>

 <sequence>

 <element name="AddressInfo" type="ebics:AddressInfoType">

 <annotation>

 <documentation xml:lang="en">Information about the customer's

address.</documentation>

 </annotation>

 </element>

 <element name="BankInfo" type="ebics:BankInfoType">

 <annotation>

 <documentation xml:lang="en">Information about the customer's banking access

parameters.</documentation>

 </annotation>

 </element>

 <element name="AccountInfo" minOccurs="0" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">Information about the customer's

accounts.</documentation>

 </annotation>

 <complexType>

 <complexContent>

 <extension base="ebics:AccountType">

 <sequence>

 <element name="UsageOrderTypes" type="ebics:OrderTListType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">List containing the order types which this

account is restricted to; if omitted, the account is unrestricted; if the list is empty, the

account is blocked for any order type.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>

 </sequence>

 <attribute name="ID" type="ebics:AccountIDType" use="required">

 <annotation>

 <documentation xml:lang="en">Unique identification code for this

account.</documentation>

 </annotation>

 </attribute>

 </extension>

 </complexContent>

 </complexType>

 </element>

 <element name="OrderInfo" type="ebics:AuthOrderInfoType" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">Information about order types which the customer is

authorised to use.</documentation>

 </annotation>

 </element>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 231

 Status: Final Version 3.0

 </sequence>

 </complexType>

 <complexType name="AddressInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for address information with regard to distributed

signatures (order types HKD, HTD).</documentation>

 </annotation>

 <sequence>

 <element name="Name" type="ebics:NameType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">User's name.</documentation>

 </annotation>

 </element>

 <element name="Street" type="ebics:NameType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Street and house number.</documentation>

 </annotation>

 </element>

 <element name="PostCode" type="token" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Postal code.</documentation>

 </annotation>

 </element>

 <element name="City" type="ebics:NameType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">City.</documentation>

 </annotation>

 </element>

 <element name="Region" type="ebics:NameType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Region / province / federal state.</documentation>

 </annotation>

 </element>

 <element name="Country" type="ebics:NameType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Country.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="BankInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for bank information with regard to distributed

signatures (order types HKD, HTD).</documentation>

 </annotation>

 <sequence>

 <element name="HostID" type="ebics:HostIDType">

 <annotation>

 <documentation xml:lang="en">ID of the bank's host system.</documentation>

 </annotation>

 </element>

 <element ref="ebics:Parameter" minOccurs="0" maxOccurs="unbounded"/>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="AuthOrderInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for order authorisation information with regard to

distributed signatures (order types HKD, HTD).</documentation>

 </annotation>

 <sequence>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 232

 Status: Final Version 3.0

 <element name="OrderType" type="ebics:OrderTBaseType">

 <annotation>

 <documentation xml:lang="en">Order type.</documentation>

 </annotation>

 </element>

 <element name="FileFormat" type="ebics:FileFormatType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">File format parameter.</documentation>

 </annotation>

 </element>

 <element name="TransferType" type="ebics:TransferType">

 <annotation>

 <documentation xml:lang="en">Transfer type, i.e. direction of the transmission of

order data (upload/download).</documentation>

 </annotation>

 </element>

 <element name="OrderFormat" type="ebics:OrderFormatType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Format specification of the order data (e.g.

"DTAZV").</documentation>

 </annotation>

 </element>

 <element name="Description" type="ebics:OrderDescriptionType">

 <annotation>

 <documentation xml:lang="en">Short description of the order type.</documentation>

 </annotation>

 </element>

 <element name="NumSigRequired" type="nonNegativeInteger" default="0" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Minimum number of digital signatures needed to authorise

an order of the given type (default is none, if omitted).</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="UserInfoType">

 <annotation>

 <documentation xml:lang="en">Data type for user information with regard to distributed

signatures (order types HKD, HTD).</documentation>

 </annotation>

 <sequence>

 <element name="UserID">

 <annotation>

 <documentation xml:lang="en">User ID.</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="ebics:UserIDType">

 <attribute name="Status" type="ebics:UserStatusType" use="required">

 <annotation>

 <documentation xml:lang="en">The user's numeric status.</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="Name" type="ebics:NameType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">The user's name.</documentation>

 </annotation>

 </element>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 233

 Status: Final Version 3.0

 <element name="Permission" type="ebics:UserPermissionType" maxOccurs="unbounded">

 <annotation>

 <documentation xml:lang="en">Information about the user's

permissions.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="UserPermissionType">

 <annotation>

 <documentation xml:lang="en">Datatype for user permissions with regard to distributed

signatures (order types HKD, HTD).</documentation>

 </annotation>

 <sequence>

 <element name="OrderTypes" type="ebics:OrderTListType">

 <annotation>

 <documentation xml:lang="en">List of order types which the user's permission belongs

to.</documentation>

 </annotation>

 </element>

 <element name="FileFormat" type="ebics:FileFormatType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">File format parameters which the user's permission

belongs to.</documentation>

 </annotation>

 </element>

 <element name="AccountID" type="ebics:AccountIDType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Identification code of the affected

account.</documentation>

 </annotation>

 </element>

 <element name="MaxAmount" type="ebics:AmountType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Maximum total amount which the user's permission is

valid for.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="AuthorisationLevel" type="ebics:AuthorisationLevelType">

 <annotation>

 <documentation xml:lang="en">Authorisation level of the user who signed the order; to

be omitted for orders of type "download".</documentation>

 </annotation>

 </attribute>

 <anyAttribute namespace="##targetNamespace" processContents="strict"/>

 </complexType>

 <complexType name="AccountType">

 <annotation>

 <documentation xml:lang="en">Data type for detailed account information.</documentation>

 </annotation>

 <sequence>

 <element name="AccountNumber" maxOccurs="2">

 <annotation>

 <documentation xml:lang="en">Account number (German format and/or

international=IBAN).</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="ebics:AccountNumberType">

 <attribute name="international" type="boolean" use="optional" default="false">

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 234

 Status: Final Version 3.0

 <annotation>

 <documentation xml:lang="en">Is the account number specified using the

national=German or the international=IBAN format?</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="BankCode" maxOccurs="2">

 <annotation>

 <documentation xml:lang="en">Bank code (German and/or international=SWIFT-BIC

format).</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="ebics:BankCodeType">

 <attribute name="international" type="boolean" use="optional" default="false">

 <annotation>

 <documentation xml:lang="en">Is the bank code specified using the

national=German or the international=SWIFT-BIC format?</documentation>

 </annotation>

 </attribute>

 <attribute name="Prefix" type="ebics:BankCodePrefixType" use="optional">

 <annotation>

 <documentation xml:lang="en">National=German prefix for bank

codes.</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 <element name="AccountHolder" type="ebics:AccountHolderType" minOccurs="0">

 <annotation>

 <documentation xml:lang="en">Name of the account holder.</documentation>

 </annotation>

 </element>

 </sequence>

 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional" default="EUR">

 <annotation>

 <documentation xml:lang="en">Currency code for this account.</documentation>

 </annotation>

 </attribute>

 <attribute name="Description" type="ebics:AccountDescriptionType" use="optional">

 <annotation>

 <documentation xml:lang="en">Description of this account.</documentation>

 </annotation>

 </attribute>

 </complexType>

 <complexType name="AmountType">

 <annotation>

 <documentation xml:lang="en">Data type for an amount including a currency attribute

(defaults to "EUR").</documentation>

 </annotation>

 <simpleContent>

 <extension base="ebics:AmountValueType">

 <attribute name="Currency" type="ebics:CurrencyBaseType" use="optional" default="EUR">

 <annotation>

 <documentation xml:lang="en">Currency code, default setting is

"EUR".</documentation>

 </annotation>

 </attribute>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 235

 Status: Final Version 3.0

 </extension>

 </simpleContent>

 </complexType>

 <element name="Parameter">

 <annotation>

 <documentation xml:lang="en">generic key-value parameters.</documentation>

 </annotation>

 <complexType>

 <sequence>

 <element name="Name" type="token">

 <annotation>

 <documentation xml:lang="en">Name of the parameter (=key).</documentation>

 </annotation>

 </element>

 <element name="Value">

 <annotation>

 <documentation xml:lang="en">Value of the parameter.</documentation>

 </annotation>

 <complexType>

 <simpleContent>

 <extension base="anySimpleType">

 <attribute name="Type" type="NCName" use="optional" default="string">

 <annotation>

 <documentation xml:lang="en">XML type of the parameter value (default is

"string").</documentation>

 </annotation>

 </attribute>

 </extension>

 </simpleContent>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

9.3.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HKDResponse»

OrderData

ebics:HKDResponse»

OrderDataType (complex)

1 Order data for order type

HKD

- (complex)

PartnerInfo ebics:PartnerInfoType

(complex)

1 Customer data - (complex)

AddressInfo ebics:AddressInfoType 1 Customer’s address

information

- (complex)

Name (in

AddressInfo)

ebics:NameType

(normalizedString)

0..1 Customer’s name “John Doe“

Street ebics:NameType

(normalizedString)

0..1 Customer’s street and

house number

“Elmstreet 1“

PostCode token 0..1 Customer’s post code “12345“

City ebics:NameType

(normalizedString)

0..1 Customer’s city “Smallville“

Region ebics:NameType

(normalizedString)

0..1 Customer’s region / Federal

State

“Virginia“

Country ebics:NameType 0..1 Customer’s country “USA“

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 236

 Status: Final Version 3.0

(normalizedString)

BankInfo ebics:BankInfoType

(complex)

1 Information on customer’s

financial institution

connection

- (complex)

HostID ebics:HostIDType

(token,

maxLength=35

1 EBICS bank system ID “EBIXHOST“

“EBICS-

HOST4711”

“BANKFRPP”

Parameter Reference to global element

(complex)

0..∞ Structure for generic key

value parameters with

optional type specification

- (complex)

AccountInfo ebics:AccountType

(complex)

0..∞ Information on customer’s

accounts. An account is

only listed in the HKD

response if the customer

possesses an agreement

on the provision for it, OR if

at least one of the

customer's subscribers is

authorised to sign for the

account. The account

holder does not have to be

the same customer as the

one the HKD is retrieved

for.

- (complex)

AccountInfo»

@Currency

ebics:CurrencyBaseTyp

e

(token, length=3)

0..1 Currency code for the

account in question,

according to ISO 4127; if

not specified, “EUR” is

assumed

“EUR”

Description ebics:Account»

DescriptionType

(normalizedString)

0..1 Textual description of the

account

“Giro account“

AccountInfo@ID ebics:AccountIDType

(token,

maxLength=64)

1 Unambiguous account

identification code

“ABCDEFG»

abcdefg»

1234567890“

- - 1..2 Information on the account

number: AccountNumber

and/or

NationalAccountNumber

-

AccountNumber ebics:AccountNumber»

Type

(token,

maxLength=40,

pattern="\d{3,10}|

([A-Z]{2}\d{2}

[A-Za-z0-9]{3,30})")

1 Account number (German

format or international as

IBAN)

„123456789“

AccountNumber»

@international

boolean 0..1 Is the account number

given in national=German

(false, default) or in

international=IBAN format

(true)?

“false“

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 237

 Status: Final Version 3.0

National»

AccountNumber

ebics:National»

AccountNumberType

(token,

maxLength=40)

1 Account number in free

format (for national account

numbers which comply

neither to German nor

international standards)

„12345678901

23456“

National»

Account»

Number@format

token 1 Description of the format of

the account number

„other“

- - 0..2 Information on the bank

code: BankCode and/or

NationalBankCode

-

BankCode ebics:BankCodeType

(token,

maxLength=11,

pattern="\d{8}|

([A-Z]{6}[A-Z0-9]{2}

([A-Z0-9]{3})?)")

1 Bank sort code (German

format or international as

SWIFT-BIC)

„50010070“

BankCode»

@international

boolean 0..1 Is the bank sort code given

in national=German (false,

default) or in

international=SWIFT-BIC

format (true)?

“false“

BankCode»

@Prefix

ebics:BankCodePrefix»

Type

(token, length=2)

0..1 National bank sort code

prefix

“DE“

NationalBank»

Code

ebics:National»

BankCodeType

(token,

maxLength=30)

1 Bank code in free format

(neither German format nor

SWIFT-BIC)

„12345678901

2“

NationalBank»

Code@format

token 1 Description of the bank

code format

“other”

AccountHolder ebics:AccountHolder»

Type

(normalizedString)

0..1 Name of the account holder “John Doe“

UsageOrder»

Types

ebics:UsageOrderType

0..1 Order restrictions for the

account in question; if not

specified, there are no

restrictions as to specific

BTF identifiers for the

account in question; if the

empty tag is used, the

account in question has not

been activated for any BTF

identifiers

“STA IZV”

Service ebics:RestrictedServi

ceType

for this structure refer to

chapter 8.3.6

0.. ∞ Kind of business

transaction, identified by

the service structure

OrderInfo ebics:OrderInfoType

(complex)

1..∞ Information on the order

types assigned to the

customer

- (complex)

AdminOrderType ebics:OrderTBaseType

(token, length=3,

1 The administrative order

type assigned to the

“BTD”, BTU”

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 238

 Status: Final Version 3.0

pattern="[A-Z0-

9]{3}")

customer (for up-

download of

business

transactions

Service ebics:RestrictedServi

ceType

for this structure refer to

chapter 8.3.6

0..1 Kind of business

transaction, identified by

the service structure

Description ebics:Order»

DescriptionType

(normalizedString,

maxLength=128)

1 Textual description of the

kind of order

“SEPA credit

transafer“

NumSig»

Required

nonNegativeInteger 0..1 Number of ES’s required

for the kind of order;

default=0, unless specified

2

UserInfo ebics:UserInfoType

(complex)

1..∞ Subscriber information - (complex)

UserID ebics:UserIDType

(token,

maxLength=35,

pattern="[a-zA-Z0-

9,=]{1,35})

1 Subscriber ID “USR100“

UserID@Status ebics:UserStatusType

(nonNegativeInteger

, maxInclusive=99)

1 Subscriber’s state:

1: Ready: Subscriber is
permitted access
2: New: Initial state after
establishing the subscriber
for EBICS ("established")
3: Partly initialised (INI):
Subscriber has sent INI file,
yet no HIA
4:Partly initialised (HIA):
Subscriber has sent HIA
order, but no INI file yet
5: Initialised: Subscriber
has sent HIA order and INI
file
6: Suspended (several
failed attempts), new
initialisation via INI and HIA
possible)
7: New_FTAM: Not
applicable
8: Suspended (by the
customer's SPR order),
new initialisation via INI and
HIA possible

9: Suspended (by bank),
new initialisation via INI
and HIA is not possible,
suspension can only be
revoked by the bank

1

Name (in

UserInfo)

ebics:NameType

(normalizedString)

0..1 Subscriber’s name “John Doe“

Permission ebics:PermissionType

(complex)

1..∞ Information on the - (complex)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 239

 Status: Final Version 3.0

subscriber’s authorisations

Permission»

@Authorisa»

tionLevel

ebics:Authorisation»

LevelType

(token, length=1:

"E", "A", "B", "T")

0..1 Signature class for which

the subscriber is

authorised: “E“=Individual

signature, “A“=First

signature, “B“=Second

signature, “T“=Transport

signature.

Not to be specified in the

case of download order

types

“A“

AdminOrderType ebics:OrderTBaseType

(token, length=3,

pattern="[A-Z0-

9]{3}")

1 The administrative order

type assigned to the

customer

“BTD”, BTU”

(for up-

download of

business

transactions

Service ebics:RestrictedServi

ceType

for this structure refer to

chapter 8.3.6

0..1 Kind of business

transaction, identified by

the service structure

AccountID ebics:AccountIDType

(token,

maxLength=64)

0..∞ Reference to the

identification code of an

authorised account

“ABCDEFG»

abcdefg»

1234567890“

MaxAmount ebics:AmountType

(ebics:AmountValue»

Type

decimal,

totalDigits=24,

fractionDigits=4)

0..1 Amount upper threshold up

to which the subscriber’s

signature authorisation is

valid (Validity of the

reference is enforced by

the EBICS XML schema)

5000.00

MaxAmount»

@Currency

ebics:CurrencyBaseTyp

e

(token, length=3)

0..1 Currency of the maximum

amount, according to ISO

4127; if not specified,

“EUR” is assumed

“EUR”

Notes on the clarification:

The allocation of account authorisations for the particular subscribers is effected by means of

the element UserInfo/Permission in the following way:

If the element AccountID is not transferred with UserInfo/Permission, the

administrative order types and service identifier transferred with UserInfo/Permission

apply automatically to all accounts of the respective customer.

However, if the element AccountID is transferred with UserInfo/Permission, the
authorisations transferred with the respective element
UserInfo/Permission/OrderTypes apply exclusively to the account IDs referenced via
AccountID.

9.3.2.1.4 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HKDResponseOrderData

 xmlns="urn:org:ebics:H005"

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 240

 Status: Final Version 3.0

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_orders_H005.xsd">

 <PartnerInfo>

 <AddressInfo>

 <Name>John Doe</Name>

 <Street>Elmstreet 1</Street>

 <PostCode>12345</PostCode>

 <City>Smallville</City>

 <Region>Virginia</Region>

 <Country>USA</Country>

 </AddressInfo>

 BankInfo

 <HostID>EBIXHOST</HostID>

 </BankInfo>

 <AccountInfo ID="accid01" Currency="EUR" Description="Girokonto">

 <AccountNumber international="false">123456789</AccountNumber>

 <BankCode international="false" Prefix="DE">50010070</BankCode>

 <AccountHolder>John Doe</AccountHolder>

 </AccountInfo>

 <OrderInfo>

 <AdminOrderType>BTD</AdminOrderType>

 <ServiceName>

 <ServiceName>EOP</ServiceName>

 <MsgName>camt.053</MsgName>

 </ServiceName>

 <Description>Download ISO20022 Account statement</Description>

 </OrderInfo>

 <OrderInfo>

 <AdminOrderType>BTU</AdminOrderType>

 <ServiceName>

 <ServiceName>SCT</ServiceName>

 <MsgName>pain.001</MsgName>

 </ServiceName>

 <Description>SEPA Credit transfer order</Description>

 <NumSigRequired>2</NumSigRequired>

 </OrderInfo>

 </PartnerInfo>

 <UserInfo>

 <UserID Status="1">USR100</UserID>

 <Permission>

<AdminOrderType>BTD</AdminOrderType>

 <ServiceName>

 <ServiceName>EOP</ServiceName>

 <MsgName>camt.053</MsgName>

 </ServiceName>

 </Permission>

 </UserInfo>

 <UserInfo>

 <UserID Status="1">USR200</UserID>

 <Permission AuthorisationLevel="A">

<AdminOrderType>BTD</AdminOrderType>

 <ServiceName>

 <ServiceName>SDD</ServiceName>

 <MsgName>pain.008</MsgName>

 </ServiceName>

 <AccountID>accid01</AccountID>

 <MaxAmount Currency="EUR">6000.00</MaxAmount>

 </Permission>

 <Permission><AdminOrderType>BTD</AdminOrderType>

 <ServiceName>

 <ServiceName>EOP</ServiceName>

 <MsgName>camt.053</MsgName>

 </ServiceName>

 </Permission>

 </UserInfo>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 241

 Status: Final Version 3.0

</HKDResponseOrderData>

9.4 HTD (retrieve subscriber’s customer and subscriber information)

With HTD, the subscriber can retrieve information stored by the bank relating to their

company or themselves; however, in contrast to HKD they are not given information on the

company’s other subscribers.

HTD is an administrative order type of type “download”.

9.4.1 HTD request

The HTD request does not contain specific data that goes beyond that named in the general

transaction description.

9.4.2 HTD response

Characteristics of the (decoded & decrypted & decompressed) OrderData (order data) for

HTD: HTDResponseOrderData

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 242

 Status: Final Version 3.0

9.4.2.1.1 XML schema (graphic representation)

Diagram 98: HTDResponseOrderData

9.4.2.1.2 XML schema (textual representation)

 <element name="HTDResponseOrderData" type="ebics:HTDReponseOrderDataType"

substitutionGroup="ebics:EBICSOrderData">

 <annotation>

 <documentation xml:lang="en">Order data for order type HTD (response: receive user-based

information on the user's customer and the user herself/himself).</documentation>

 </annotation>

 <key name="HTDAccountKey">

 <annotation>

 <documentation xml:lang="de">Key for the identification of the account

</documentation>

 </annotation>

 <selector xpath="./ebics:PartnerInfo/ebics:AccountInfo"/>

 <field xpath="@ID"/>

 </key>

 <keyref name="HTDAccountRef" refer="ebics:HTDAccountKey">

 <annotation>

 <documentation xml:lang="de">Reference to the account identification keys

</documentation>

 </annotation>

 <selector xpath="./ebics:UserInfo/ebics:Permission"/>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 243

 Status: Final Version 3.0

 <field xpath="AccountID"/>

 </keyref>

 </element>

 <complexType name="HTDReponseOrderDataType">

 <annotation>

 <documentation xml:lang="en">Data type for order data of type HTD (response: receive

user-based information on the user's customer and the user herself/himself).</documentation>

 </annotation>

 <sequence>

 <element name="PartnerInfo" type="ebics:PartnerInfoType">

 <annotation>

 <documentation xml:lang="en">Customer data.</documentation>

 </annotation>

 </element>

 <element name="UserInfo" type="ebics:UserInfoType">

 <annotation>

 <documentation xml:lang="en">User data.</documentation>

 </annotation>

 </element>

 <any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

9.4.2.1.3 Meaning of the XML elements/attributes

XML element/

attribute

Data type # Meaning Example

HTDResponse»

OrderData

ebics:HTDResponse»

OrderDataType (complex)

1 Order data for order

type HTD

- (complex)

PartnerInfo ebics:PartnerInfoType

(complex)

1 Customer data - (complex)

UserInfo ebics:UserInfo (complex) 1 Subscriber information - (complex)

For the remaining XML elements and attributes: See order type HKD (Chapter 9.3.2.1.3).

The clarification on the allocation of account authorisations itemised in this chapter applies
as well.

9.4.2.1.4 Example XML

<?xml version="1.0" encoding="UTF-8"?>

<HTDResponseOrderData

 xmlns="urn:org:ebics:H005"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_orders_H005.xsd">

 <PartnerInfo>

 <AddressInfo>

 <Name>John Doe</Name>

 <Street>Elmstreet 1</Street>

 <PostCode>12345</PostCode>

 <City>Smallville</City>

 <Region>Virginia</Region>

 <Country>USA</Country>

 </AddressInfo>

 BankInfo

 <HostID>EBIXHOST</HostID>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 244

 Status: Final Version 3.0

 </BankInfo>

 <AccountInfo ID="accid01" Currency="EUR" Description="Giro account">

 <AccountNumber international="false">123456789</AccountNumber>

 <BankCode international="false" Prefix="DE">50010070</BankCode>

 <AccountHolder>John Doe</AccountHolder>

 </AccountInfo>

 <OrderInfo>

 <AdminOrderType>BTD</AdminOrderType>

<Service>

 <ServiceName>EOP</ServiceName>

 <Scope>DE</Scope>

 <MsgName>mt940</MsgName>

</Service> <Description>Download SWIFT daily accounts</Description>

 </OrderInfo>

 <OrderInfo>

 <AdminOrderType>BTU</AdminOrderType>

<Service>

 <ServiceName>SCT</ServiceName>

 <MsgName>pain.001</MsgName>

 </Service> <Description>Send SEPA credit transfer order</Description>

 <NumSigRequired>2</NumSigRequired>

 </OrderInfo>

 </PartnerInfo>

 <UserInfo>

 <UserID Status="1">USR100</UserID>

 <Permission>

 <AdminOrderType>BTD</AdminOrderType>

<Service>

 <ServiceName>EOP</ServiceName>

 <Scope>DE</Scope>

 <MsgName>camt.053</MsgName>

 </Service>

 </Permission>

 <Permission AuthorisationLevel="A">
 <AdminOrderType>BTU</AdminOrderType>

<Service>

 <ServiceName>DCT</ServiceName>

 <Scope>BIL</Scope>

 <MsgName>abcd1123</MsgName>

 </Service>

 <AccountID>accid01</AccountID>

 <MaxAmount Currency="EUR">6000.00</MaxAmount>

 </Permission>

 </UserInfo>

</HTDResponseOrderData>

9.5 HEV (Download of supported EBICS versions)

By means of HEV the subscriber can inform himself of the EBICS versions supported at the

bank's end. The bank's response contains a list of supported EBICS versions and the version

of the relevant schema.

HEV is an administrative order type of type “download”.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 245

 Status: Final Version 3.0

9.5.1 HEV request

The HEV request retrieves only EBICS versions which are supported by the bank. This

request can also be executed by subscribers not initialised. Therefore, an identification and

authentication signature is not required.

Only the following information is mandatorily transmitted along with the HEV request:

 Host ID of the EBICS bank computer

The transaction is cancelled and the return code EBICS_INVALID_HOST_ID is returned if

the transmitted HostID is unknown on the bank’s side.

Note: This return code is only allowed for the HEV request!

9.5.2 HEV response

The response provides the following information:

 technical return code

 technical report text

 See document “EBICS Annex 1 Return Codes” for the value ranges of both fields. As the

EBICS version of the customer system is unknown to the bank system at the time of the

HEV request, the bank system assigns values to the fields which are defined in the most

updated EBICS version supported at the bank's end. As there is no language-attribute

available in the request, the report text is always transmitted in English.

 List of the EBICS versions supported by the bank system and names of the schema

versions relevant for these

9.5.3 Schema for HEV request / HEV response

For HEV request und HEV response the neutral schema ebics_hev.xsd is used which is

independent of the EBICS versions currently supported by the bank and can be retrieved

from http://www.ebics.org (category „Specification“). The schema contains request and

response. In the case of a request, ebicsHEVRequest must be filled in, in case of a

response, ebicsHEVResponse must be filled in.

http://www.ebics.org/H000

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 246

 Status: Final Version 3.0

Diagram 99: HEVRequest / HEVResponse

See www.ebics.org for the textual representation of the schema ebics_hev.xsd .

9.5.3.1 Meaning of the XML elements and XML attributes of the HEV response

XML element/

attribute

Data type # Meaning Example

System

ReturnCode

ebics:SystemReturnCodeType

(complex)

1 Technical return

code and error

message (in English)

Value range

for code

according to

document

“EBICS

Annex 1

Return

Codes”

VersionNumber ebics:VersionNumberType

(complex)

(token, length=5,

pattern="[0-9]{2}[.][0-

9]{2}"

0..∞ EBICS version

supported by the

bank

02.40

(complies also

to 2.4)

ProtocolVersion ebics:ProtocolVersionType

(token, length=4)

1 Schema version

relevant for the

supported EBICS

version

H005

http://www.ebics.org/

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 247

 Status: Final Version 3.0

9.5.3.2 Example XML for the HEV response

<?xml version="1.0" encoding="UTF-8"?>

<ebics:ebicsHEVResponse xsi:schemaLocation="http://www.ebics.org/H000 ebics_hev.xsd"

xmlns:ebics="http://www.ebics.org/H000" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <ebics:SystemReturnCode>

 <ebics:ReturnCode>000000</ebics:ReturnCode>

 <ebics:ReportText>EBICS_OK</ebics:ReportText>

 </ebics:SystemReturnCode>

 <ebics:VersionNumber ProtocolVersion="H003">02.40</ebics:VersionNumber>

 <ebics:VersionNumber ProtocolVersion="H005">02.50</ebics:VersionNumber>

</ebics:ebicsHEVResponse>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 248

 Status: Final Version 3.0

10 EBICS Customer acknowledgement (HAC)

10.1 Preliminary Notes

1. The following stipulations for the allocation of the pain.002 message (ISO Edition 2009) only apply

to the EBICS customer acknowledgement (HAC: H label for technical EBICS administrative order

type; A = Acknowledgement; C = Customer).

HAC describes all actions and results that occur while uploading, downloading, or signing files and

may give – in addition – information about the content of the order/file (display file).

2. The aim is to use an international standard (schema); we have chosen ISO20022 pain.002

 Because at present pain.002 is the best alternative although it is not ideal.

 As a long-term solution, an ISO message especially designed for this purpose should be

requested

3. When downloading HAC, the customer receives all status information since the download of the

last HAC. It contains all actions and status information of the PartnerID. For this the element group

<OrgnlPmtInfAndSts> contains 1..n occurrences. Every occurrence is one protocol step.

Note: In fact this element group is optional. An essential rule for the EBICS customer

acknowledgement is that the element group <OrgnlPmtInfAndSts> occurs at least once.

4. In contrast to the old human readable German PTK, the main focus of the XML-based HAC will be

the automatic evaluation (suitable preparation by the client system is necessary).

10.2 Allocation of pain.002 for HAC

Complete message – general overview:

10.2.1 Allocation of the element group Group Header

Element group <GrpHdr> - overview:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 249

 Status: Final Version 3.0

Stipulations for the allocation:

This element group occurs exactly once.

All elements in <GrpHdr>, which are not mentioned in the list, will never be used in

HAC!

Name XML Tag Rules for HAC

MessageIdentifica
tion

<MsgId> Mandatory in the ISO schema
(and in HAC as well)

CreationDateTime <CreDtTm> Mandatory in the ISO schema
(and in HAC as well):
Creation date/Time of the pain.002 message.
Allocation rule: The representation of <CreDtTm> must be the
same as specified for EBICS-schema (see EBICS
specification chapter 2.3). Example: 2015-05-13T10:00:00Z

InitiatingParty <InitPty><Id><OrgId> Element group for the transfer of the HostID (optional in the
ISO schema; but mandatory in HAC)

HostId (technical ID for the EBICS bank server) to be
allocated in <Othr>.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 250

 Status: Final Version 3.0

10.2.2 Allocation of the element group Original Group Information and Status

As to ISO this element group occurs exactly once.

There are two mandatory elements: <OrgnlMsgId> and <OrgnlMsgNmId> (both type

Max35Text). They state grouping information concerning the original message. By reason

that HAC states information on a collection of different orders/actions of a PartnerID, these

elements are allocated with the constant „EBICS“.

10.2.3 Allocation of the element group Original Payment Information and Status

This element group is optional in ISO but for HAC it must occur at least once!

Element group <OrgnlPmtInfAndSts> - Overview:

Stipulations for the allocation:

All elements in <OrgnlPmtInfAndSts>, which are not mentioned in the list, will never be used

in HAC!

Name XML Tag Rules for HAC

OriginalPaymentI
nforamtionIdentifi
cation

<OrgnlPmtInfId> Mandatory in the ISO schema (and in HAC as well).

Information on the type of action; see chapter 10.2.3.1

StatusReasonInfo
rmation

<StsRsnInf> [0..unbounded] in ISO schema, occurrence exactly one time
in HAC

Information on the order (including all involved users and the
timestamp), the result of the action and data for the display
file; see chapter 10.2.3.2

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 251

 Status: Final Version 3.0

10.2.3.1 Type of action

The type of action is allocated in the element <OrgnlPmtInfId>.

The following range of values is defined for that:

HAC – types of action Meaning

Range of values

(Max35Text); codes

defined for EBICS

„type of action“ transmission

File submitted to the bank
Each kind of file upload except the
upload of an ES file

FILE_UPLOAD

File downloaded from the bank
Each kind of file download except
the download of an ES file

FILE_DOWNLOAD

Electronic signature submitted to
the bank

Upload of an ES file using the
EDS process (administrative order
type HVE)

ES_UPLOAD

Electronic signature downloaded
from the bank

Download of an ES file
(reserved for later versions)

ES_DOWNLOAD

„type of action“
postprocessing (EDS etc.)

Signature verification
Bank server verifies the
transmitted ES

ES_VERIFICATION

Code when no EDS is used.

Forwarding to EDS
File is stored in the EDS process
waiting for the necessary ES’s

VEU_FORWARDING

EDS signature verification
Bank server verifies the
transmitted ES within the EDS
process

VEU_VERIFICATION

Code when EDS is used.

End of EDS signature
verification

The verification process in the
EDS is finished, because the last
ES necessary for authorisation of
a payment within the EDS was
verified successfully or the
transmitted ES was not correct.

VEU_VERIFICATION_END

Cancellation of EDS order
Order is cancelled by a authorised
user within the EDS process

VEU_CANCEL_ORDER

„type of action“
additional information

Provision of additional information
from bank to customer using HAC
(in <AddtlInf>)

ADDITIONAL

One of the “final indication” types of action has to be provided to indicate that no further protocol steps
are due for the corresponding order. For this type of action no reason code (in result of action) is
allowed. It is simply a label.

„type of action“ final indication

HAC end of order

With reference to an orderID this
label serves as the end label (no
protocol step follows) for the
orderID.

ORDER_HAC_FINAL

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 252

 Status: Final Version 3.0

10.2.3.2 Result of action

The result of action is allocated in the element group Status Reason Information.

Element group <StsRsnInf> - Overview:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 253

 Status: Final Version 3.0

Stipulations for the allocation:

All elements in <StsRsnInf>, which are not mentioned in the list, will never be used in HAC!

Name XML Tag Rules for HAC

Originator / Name <Orgtr><Nm> Name of the customer

Originator /
Identification /
OrganisationIdenti
fication /Other

<Orgtr><Id><OrgId><Ot
hr>

1) <Id>

2) <SchmeNm><Prtry>

Note: lenght of Id name =
Mmax35text

Element group (0..N occurrences) for different
identification codes with the following
meaning:Identification ID

The code in <SchmeNm><Prtry> identifies the kind of ID
in the element <Id> (Most of the ID names are already
defined in EBICS; in this case they are provided in EBICS
notation):

 UserID (Identification of the user)

 PartnerID (Identification of the client)

 SystemID (Identification of the technical user)

 OrderID (order number)

 AdminOrderType

 ServiceName

 Scope

 ServiceOption

 ContainerType

 MsgNameOrderIDRef (If the action refers to
another order, the OrderID is allocated here)

 AdminOrderTypeRef (If the action refers to
another order, the administrative order type is
allocated here) and the service identifiers as well:

 ServiceNameRef

 ScopeRef

 ServiceOptionRef

 ContainerTypeRef

 MsgNameRef

 PartnerIDRef (If the action refers to another order
AND another Partner, the PartnerID is allocated
here)

 TimeStamp (Timestamp of the action provided in
ISO 8601 format, analogous to chapter 2.3 in the
EBICS specification)

 DataDigest (Hash value)

Note 1: All IDs noted above have to be provided in HAC in
case they are available on the bank server.

Note 2: If IDs for service elements “Ref” are present (e.g.
ServiceNameRef) “the (current) AdminOrderType”can
only be a H* order type. Therefore the identifier
“ServiceName” to “MsgName” cannot be present.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 254

 Status: Final Version 3.0

Name XML Tag Rules for HAC

Reason <Rsn> Result of the action, table see in chapter 10.3.

All types of results are defined as ISO reason codes
(to be allocated in <Cd>).

This element is mandatory for HAC except:
The type of action <OrgnlPmtInfAndSts><OrgnlPmtInfId>
contains

1) one of the two “final indication” labels (see chapter
10.2.3.1). In this case it is not permitted to provide <Cd>.
2) “ADDITIONAL”. In this case the allocation is optional.

AdditionalInformat
ion

<AddtlInf> In case a file is displayed (display of an extraction of the
content of a file) there are 1..n occurrences (see chapter
10.2.3.3)

Further free text (Max105Text) is always permitted. The
use is optional and repeatable at will (it may be used for
free text information for customers) and the content of the
element <AdditionalOrderInfo> (information regarding the
order on the part of the client) – as this information may
be up to 255 characters, more than one occurrence is
possible)

10.2.3.3 Display file (Use in Germany)

The content for the display file (Information about the file content) is provided in

<StsRsnInf><AddtlInf>.

The display file will be delivered with the final indication label (ORDER_HAC_FINAL, refer to

chapter 10.2.3.1).

Note: This also applies to files with SignatureFlag meaning that the file is not authorised by

ES but by accompanying note signed by hand.

The existing character of the display file can be reused: Each line of the well-known PTK

display file is one occurrence of <AddtlInf>.

Name XML Tag Rules for HAC

StatusReasonInfo
rmation /
AdditionalInformat
ion

<StsRsnInf><AddtlInf> Only used for specific data in free text:

1. Examples for commonly used formats see chapters
10.2.3.3.1, 10.2.3.3.2, 10.2.3.3.3 and 10.2.3.3.4

2. Hash value (only needed for SEPA container file)

3. display file for files without specific format

10.2.3.3.1 Example for DTAUS (domestic German format)

….

<StsRsnInf>

<AddtlInf>G U T S C H R I F T E N</AddtlInf>
<AddtlInf>Bank-Code : 30040000</AddtlInf>

<AddtlInf>Kontonummer : 0822511260</AddtlInf>

<AddtlInf>Auftraggeber : Bank-Verlag</AddtlInf>

<AddtlInf>Erstellungsdatum : 10.05.00</AddtlInf>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 255

 Status: Final Version 3.0

<AddtlInf>Anzahl der Zahlungssaetze : 1</AddtlInf>

<AddtlInf>Summe der Betraege (EUR) : 68.672,00</AddtlInf>

<AddtlInf>Summe der Kontonummern : 00000000001234567</AddtlInf>

<AddtlInf>Summe der Bank-Codes : 00000000007654321</AddtlInf>

<AddtlInf>Ausfuehrungstermin : 10.05.2000</AddtlInf>

</StsRsnInf>

….

10.2.3.3.2 Example for SEPA

HAC resulting from a pain.001 message with 3 Payment Information Blocks

<StsRsnInf>

<AddtlInf>G U T S C H R I F T E N</AddtlInf>

<AddtlInf>Datei-ID: 4782647268346</AddtlInf>

<AddtlInf>Datum/Zeit: 28.11.2010/09:30:47</AddtlInf>

<AddtlInf>--</AddtlInf>

<AddtlInf>Sammlerreferenz : 46573264784</AddtlInf>

<AddtlInf>Bank-Code : WELADEDD</AddtlInf>

<AddtlInf>Kontonummer : DE44300500000054627452</AddtlInf>

<AddtlInf>Auftraggeberdaten : XXX</AddtlInf>

<AddtlInf>Anzahl der Zahlungssaetze : 187</AddtlInf>

<AddtlInf>Summe der Betraege (EUR) : 68.672,00</AddtlInf>

<AddtlInf>Ausfuehrungstermin : 01.12.2010</AddtlInf>

<AddtlInf>--</AddtlInf>

<AddtlInf>Sammlerreferenz : 46573264783</AddtlInf>

<AddtlInf>Bank-Code : WELADEDD</AddtlInf>

<AddtlInf>Kontonummer : DE44300500000054627452</AddtlInf>

<AddtlInf>Auftraggeberdaten : YYY</AddtlInf>

<AddtlInf>Anzahl der Zahlungssaetze : 165</AddtlInf>

<AddtlInf>Summe der Betraege (EUR) : 354.378,00</AddtlInf>

<AddtlInf>Ausfuehrungstermin : 03.12.2010</AddtlInf>

<AddtlInf>--</AddtlInf>

<AddtlInf>Sammlerreferenz : 46573264782</AddtlInf>

<AddtlInf>Bank-Code : WELADEDD</AddtlInf>

<AddtlInf>Kontonummer : DE30300500000035351767</AddtlInf>

<AddtlInf>Auftraggeberdaten : XXX</AddtlInf>

<AddtlInf>Anzahl der Zahlungssaetze : 34</AddtlInf>

<AddtlInf>Summe der Betraege (EUR) : 45.100,20</AddtlInf>

<AddtlInf>Ausfuehrungstermin : 01.12.2010</AddtlInf>

</StsRsnInf>

….

10.2.3.3.3 Example for SEPA container

HAC resulting from a container with 2 pain.001 messages

<StsRsnInf>

<AddtlInf>G U T S C H R I F T E N</AddtlInf>

<AddtlInf>Datei-ID: 4782647268346</AddtlInf>

<AddtlInf>Datum/Zeit: 28.11.2010/09:30:47</AddtlInf>

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 256

 Status: Final Version 3.0

<AddtlInf>--</AddtlInf>

<AddtlInf>Sammlerreferenz : 46573264784</AddtlInf>

<AddtlInf>Bank-Code : WELADEDD</AddtlInf>

<AddtlInf>Kontonummer : DE44300500000054627452</AddtlInf>

<AddtlInf>Auftraggeberdaten : XXX</AddtlInf>

<AddtlInf>Anzahl der Zahlungssaetze : 187</AddtlInf>

<AddtlInf>Summe der Betraege (EUR) : 68.672,00</AddtlInf>

<AddtlInf>Ausfuehrungstermin : 01.12.2010</AddtlInf>

<AddtlInf>Hash-Wert : 24 AE 87 34 FE BA 22 12</AddtlInf>

<AddtlInf> 34 E4 5A 34 54 33 43 23</AddtlInf>

<AddtlInf> 15 34 55 78 FA F1 33 11</AddtlInf>

<AddtlInf> 93 67 30 03 19 67 BE FA</AddtlInf>

<AddtlInf>G U T S C H R I F T E N</AddtlInf>

<AddtlInf>Datei-ID: 4782647268347</AddtlInf>

<AddtlInf>Datum/Zeit: 28.11.2010/09:30:47</AddtlInf>

<AddtlInf>--</AddtlInf>

<AddtlInf>Sammlerreferenz : 46573264785</AddtlInf>

<AddtlInf>Bank-Code : WELADEDD</AddtlInf>

<AddtlInf>Kontonummer : DE30300500000035351767</AddtlInf>
<AddtlInf>Auftraggeberdaten : YYY</AddtlInf>

<AddtlInf>Anzahl der Zahlungssaetze : 23</AddtlInf>

<AddtlInf>Summe der Betraege (EUR) : 14.256,00</AddtlInf>

<AddtlInf>Ausfuehrungstermin : 01.12.2010</AddtlInf>

<AddtlInf>Hash-Wert : 29 AE 87 34 FE BA 22 12</AddtlInf>

<AddtlInf> 34 E4 5A 34 54 33 43 23</AddtlInf>

<AddtlInf> 15 34 55 78 FA F1 33 11</AddtlInf>

<AddtlInf> 93 67 30 03 19 67 BE BB</AddtlInf>

</StsRsnInf>

….

10.2.3.3.4 Example for DTAZV (German format used for international payments)

….

<StsRsnInf>

<AddtlInf>G U T S C H R I F T E N</AddtlInf>

<AddtlInf>Bank-Code : 30040000</AddtlInf>

<AddtlInf>Kundennummer : 0000000001</AddtlInf>

<AddtlInf>Auftraggeberdaten : KARL MUSTERMANN</AddtlInf>

<AddtlInf> MUSTERSTR. 1</AddtlInf>

<AddtlInf> 50825 KOELN</AddtlInf>

<AddtlInf>Erstellungsdatum : 10.05.00</AddtlInf>

<AddtlInf>Auftragswaehrung : USD</AddtlInf>

<AddtlInf>Bank-Code : 30040000</AddtlInf>

<AddtlInf>Kontowaehrung : EUR</AddtlInf>

<AddtlInf>Kontonummer : 1234567890</AddtlInf>

<AddtlInf>Ausfuehrungstermin : 10.11.00</AddtlInf>

<AddtlInf>Betrag : 20.000,000</AddtlInf>

<AddtlInf>Anzahl der Datensaetze T : 000000000000001</AddtlInf>

<AddtlInf>Summe der Betraege : 000000000020000</AddtlInf>

</StsRsnInf>

….

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 257

 Status: Final Version 3.0

10.3 Annex for HAC: External reason codes (result of action)

The following results of action have to be protocolled in the element <Rsn><Cd>.

They are part of the external ISO code list “ExternalStatusReason1Code”:

ISO

code
ISO Name Definition

AM05

Duplication The data digest of the transmitted order data is already known

on the bank server (order data with the same data digest was

transmitted recently)

AM21
LimitExceeded Transaction amount exceeds limits agreed between bank and

client

DS01 ElectronicSignaturesCorrect The Electronic Signature(s) are correct

DS02 OrderCancelled An authorized user has cancelled the order

DS03 OrderNotCancelled The user’s attempt to cancel the order was not successful

DS04
OrderRejected The order was rejected by the bank side

(for reasons concerning content)

DS05
OrderForwardedForPostpro

cessing

The order was correct and could be forwarded for postprocessing

DS06 TransferOrder The order was transferred to EDS

DS07
ProcessingOK All actions concerning the order could be done by the EBICS

bank server

DS08 DecompressionError The decompression of the file was not successful

DS09 DecryptionError The decryption of the file was not successful

DS10 Signer1CertificateRevoked The certificate is revoked for the first signer.

DS11
Signer1CertificateNotValid The certificate is not valid (revoked or not active) for the first

signer

DS12 IncorrectSigner1Certificate The certificate is not present for the first signer

DS13
SignerCertificationAuthority

Signer1NotValid

The authority of signer certification sending the certificate is

unknown for the first signer

DS14 UserDoesNotExist The user is unknown on the server

DS15 IdenticalSignatureFound The same signature has already been sent to the bank

DS16

PublicKeyVersionIncorrect The public key version is not correct. This code is returned when

a customer sends signature files to the financial institution after

conversion from an older program version (old ES format) to a

new program version (new ES format) without having carried out

re-initialisation with regard to a public key change.

DS17
DifferentOrderDataInSignat

ures

Order data and signatures don’t match

DS18

RepeatOrder File cannot be tested, the complete order has to be repeated.

This code is returned in the event of a malfunction during the

signature check, e.g. not enough storage space.

DS19
ElectronicSignatureRightsIn

sufficient
The user’s rights (concerning his signature) are insufficient to
execute the order

DS20 Signer2CertificateRevoked The certificate is revoked for the second signer

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 258

 Status: Final Version 3.0

ISO

code
ISO Name Definition

DS21
Signer2CertificateNotValid The certificate is not valid (revoked or not active) for the second

signer

DS22 IncorrectSigner2Certificate The certificate is not present for the second signer

DS23
SignerCertificationAuthority

Signer2NotValid

The authority of signer certification sending the certificate is

unknown for the second signer

DS24 WaitingTimeExpired Waiting time expired due to incomplete order

DS25
OrderFileDeleted The order file was deleted by the bank server

(for multiple reasons)

DS26 UserSignedMultipleTimes The same user has signed multiple times

DS27 UserNotYetActivated The user is not yet activated (technically)

DS0A

DataSignRequested Data signature is required
In EBICS this means that the Electronic Signature(s) have not
been sent to the bank server yet or that the number of signatures
is insufficient

DS0B
UnknownDataSignFormat Data signature for the format is not available or invalid.

In EBICS this means that the Electronic signature(s) are incorrect

DS0C
SignerCertificateRevoked The signer certificate is revoked

In EBICS this also means that the user is locked

DS0D

SignerCertificateNotValid The signer certificate is not valid (revoked or not active). In
EBICS this means that the public key has not been activated yet
or certificate is not valid

DS0E

IncorrectSignerCertificate The signer certificate is not present.
In EBICS this means that the public key does not exist or
certificate is not present

DS0F
SignerCertificationAuthority

SignerNotValid
The authority of the signer certification sending the certificate is
unknown

DS0G
NotAllowedPayment Signer is not allowed to sign this operation type

In EBICS this means that the user has no authorisation rights

DS0H NotAllowedAccount Signer is not allowed to sign for this account

ID01
CorrespondingOriginalFileS

tillNotSent
Signature file was sent to the bank but the corresponding original
file has not been sent yet.

TA01
TransmissonAborted The transmission of the file was not successful – it had to be

aborted (for technical reasons)

TD01 NoDataAvailable There is no data available (for download)

TD02 FileNonReadable The file cannot be read (e.g. unknown format)

TD03 IncorrectFileStructure The file format is incomplete or invalid

TS01 TransmissionSuccessful The (technical) transmission of the file was successful.

TS04

TransferToSignByHand The order was transferred to pass by accompanying note signed
by hand

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 259

 Status: Final Version 3.0

10.4 Annex for HAC: Type/result of action (permitted pairs)

If more than one reason code is suitable the most precise should be chosen.

<OrgnlPmtInfId>

(Type of action)

Possible/Permitted

values for

<Rsn><Cd>

(Result of action)

Description of the code

(shortened, more details see chapter 10.3)

FILE_UPLOAD

AM05
TS01
TA01
DS0C
DS08
DS09

Upload aborted
Upload successful
Upload aborted
User locked/certificate revoked
Decompression error
Decryption error

FILE_DOWNLOAD TS01
TA01
DS0C
DS08
DS09
TD01

Download successful
Download aborted
User locked/certificate revoked
Decompression error
Decryption error
Not data available for download

ES_UPLOAD TS01
TA01
DS0C
DS08
DS09
ID01

Upload (of ES) successful
Upload (of ES) aborted
User locked/certificate revoked
Decompression error
Decryption error
Original order file has not been sent before

ES_DOWNLOAD In EBICS 2.5 still not in use

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 260

 Status: Final Version 3.0

<OrgnlPmtInfId>

(Type of action)

Possible/Permitted

values for

<Rsn><Cd>

(Result of action)

Description of the code

(shortened, more details see chapter 10.3)

ES_VERIFICATION
AM21
TD02
TD03
TS04
DS01
DS0A
DS0B
DS0C
DS0D
DS0E
DS0F
DS0G
DS0H
DS10 (DS11; DS12)

DS20 (DS21; DS22)

DS13/ DS23
DS14
DS15DS16
DS17
DS18
DS19
DS24
DS25
DS26
DS27
DS08
DS09

Amount exeeds limit
File cannot be read
The file format is invalid
Not ES-signed file (no SignatureFlag)
ES(s) are correct
Number of ES(s) insufficient
ES(s) are not correct
Certificate is revoked / user is locked
Certificate is not valid /public key not activated
Certificate not present / public key doesn’t exist
CA for certificate is unknown
Signer not allowed to sign this operation
Signer not allowed to sign this account
Certificate revoked (not valid; not present) for
first signer
Certificate revoked (not valid; not present) for
second signer
CA unknown for first/second signer
User (means signer) is unknown on the server
The same ES already has been sent to
bankPublic kexy version not correct
order data and ES(s) don’t match
Repeat order (file not testable)
Signer’s ES rights are unsufficient
Waiting time expired and file deleted by bank
File deleted by bank (multiple reasons)
Same user signed multiple times
User (means signer) not yet activated
Decompression error
Decryption error

VEU_FORWARDING DS06 Order transferred to the EDS

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 261

 Status: Final Version 3.0

<OrgnlPmtInfId>

(Type of action)

Possible/Permitted

values for

<Rsn><Cd>

(Result of action)

Description of the code

(shortened, more details see chapter 10.3)

VEU_VERIFICATION
AM21
TD02
TD03
DS01
DS0B
DS0C
DS0D
DS0E
DS0F
DS0G
DS0H
DS10 (DS11; DS12)

DS20 (DS21; DS22)

DS13/ DS23
DS14
DS15DS16
DS17
DS18
DS19
DS24
DS25
DS26
DS27

Amount exeeds limit
File cannot be read
The file format is invalid
ES(s) are correct
ES(s) are not correct
Certificate is revoked / user is locked
Certificate is not valid /public key not activated
Certificate not present / public key doesn’t exist
CA for certificate is unknown
Signer not allowed to sign this operation
Signer not allowed to sign this account
Certificate revoked (not valid; not present) for
first signer
Certificate revoked (not valid; not present) for
second signer
CA unknown for first/second signer
User is unknown on the server
The same ES already has been sent to
bankPublic kexy version not correct
order data and ES(s) don’t match
Repeat order (file not testable)
Signer’s ES rights are unsufficient
Waiting time expired and file deleted by bank
File deleted by bank (multiple reasons)
Same user signed multiple times
User not yet activated

VEU_VERIFICATION_END
DS05

Order was correct, forwarded for
postprocessing

VEU_CANCEL_ORDER DS02
DS03

Order cancelled
Order not cancelled

ADDITIONAL Optional Note: This is not in the scope of EBICS

ORDER_HAC_FINAL ---

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 262

 Status: Final Version 3.0

11 Appendix: Cryptographic processes

11.1 Identification and authentication signature

11.1.1 Process

Identification and authentication signatures are based on the RSA signature process. The

following parameters determine the identification and authentication signature process:

Length of the (secret) RSA key, hash algorithm, padding process, canonisation process.

For the identification and authentication process, EBICS defines the process “X002” with

the following parameters:

Parameter Value

Key length in Kbit >=2Kbit (2048 bit) and <=16Kbit

Hash algorithm SHA-256

Padding process PKCS#1

Canonisation process http://www.w3.org/TR/2001/REC-xml-c14n-

20010315

As with X002 the minimum key length has not been changed in comparison to X001, the

identification and authentication keys need not to be changed when upgrading from X001 to

X002.

The optional XML signature fields “KeyInfo” and “Object” remain unfilled.

From EBICS 2.4 on, the customer system must use the hash value of the public bank key

X002 in a request. The transaction is cancelled with return code

EBICS_INVALID_REQUEST_CONTENT if X001 is still used in a request.

11.1.2 Format

Identification and authentication signatures are represented in EBICS messages in

accordance with the W3C recommendation “Signature Syntax and Processing”

((http://www.w3.org/TR/xmldsig-core/). Hence identifiers of the algorithms for forming the

hash value, the signature and the indicator of the canonisation process are components of

the identification and authentication signature. Therefore it is not necessary to change the

XML interface when a new version of “X00n” is defined with altered parameters. This

especially applies for versions that utilise SHA-224, SHA-256, SHA-384 or SHA-512 as a

hash function.

When placing the identification and authentication signature in the element

SignatureValue, it is principally not filled up to the full length of the modulo of the RSA key

for generating this signature. .

http://www.w3.org/TR/xmldsig-core/

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 263

 Status: Final Version 3.0

11.2 Electronic signatures

11.2.1 Process

Electronic signatures are based on the RSA signature process. The processes for

generating/verifying electronic signatures are defined in the Appendix (Chapter 14).

EBICS must support Version “A005” or “A006” of the bank-technical electronic signature.

11.2.2 Format

The schema file „ebics_signature.xsd“ contains the element UserSignatureData for the

signature of the subscriber in EBICS messages. To this end, an instance document is

created for “ebics_signature.xsd” that contains UserSignatureData for subscriber ES’s as

top-level elements. UserSignatureData contains a list of elements

OrderSignatureData for one or more subscriber ES’s (see also Diagram 4).

The XML schema definition file “ebics_orders_H005.xsd” contains the definition of the global

elements BankSignatureData for embedding the financial institution's electronic signature

(As this is an intended feature, the structure is not usable yet, especially

BankSignatureData still contains an element OrderSignature to receive a bank ES in

base64 coding (see Diagram 4).

11.2.3 EBICS authorisation schemata for signature classes

EBICS specifies the authorisation schemata for orders that require one or two bank-technical

ES’s. Authorisation schemata for orders that require more than two bank-technical ES’s are

not described in this standard, although it is not forbidden to transmit more than two ES’s.

E = single signature, A = first signature, B = second signature, T = transport signature (not

bank-technical).

Authorisation schema for orders with a minimum ES quantity = 0:

The minimum quantity ES = 0 applies to orders that are authorised via

accompanying notes (no SignatureFlag) or for key management orders

which require only a transport signature for authorisation (ES of class E, A,

and B are also possible). Orders authorised by ES (SignatureFlag is present) have to be

signed sufficiently. As a bank-technical ES is the minimum requirement, the minimum

number of ES = 1 is the rule.

Authorisation schema for orders with a minimum ES quantity = 1:

 Authorisation via a single bank-technical ES:
Authorisation of the order with a single ES can be effected with a single
signature.

E A B T

   

E A B T

   

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 264

 Status: Final Version 3.0

 Authorisation with two bank-technical ES’s:
Authorisation of the order can also take place with 2 ES’s
of class E, A or B if at least one of these two is a first or a
single signature.

Authorisation schema for orders with a minimum ES quantity = 2:

 With the exception of the combination of two second
signatures, authorisation of the order is possible with any
combination of two bank-technical ES’s.

In general, the following applies:

 There is no maximum ES quantity defined, but in the case of more than two ES the
transmitted signatures have to comply with the rules the authorisation schemas above.

 Individual signatures are fundamentally admissible for authorisation, but are only
sufficient in the case of orders where the minimum ES requirement = 0 or ES
requirement = 1

 A transport signature never authorises the implementation of an order, it only allows the
order to be submitted

 The order in which signatures are submitted is irrelevant

 The bank-technical ES’s of an order MUST be supplied by different subscribers (if
necessary, also different customers).

11.3 Encryption

11.3.1 Encryption at TLS level

11.3.1.1 Process

The customer system and the bank system MUST agree on the use of one of the following
procedures (so-called “ciphersuites”, see RfCs 2246 and 3268) within the framework of the
TLS handshake (details see current EBICS Annex “Transport Layer Security”)

first ES 

second ES  E A B T

E    

A    

B    

T    

first ES 

second ES  E A B T

E    

A    

B    

T    

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 265

 Status: Final Version 3.0

11.3.2 Encryption at application level

11.3.2.1 Process

The process for encrypting the order data and ES’s of an order is a hybrid process based on

the symmetrical encryption process 2-key triple DES and the asymmetrical encryption

process RSA.

The order data and ES’s of an EBICS transaction are symmetrically encrypted. For each

EBICS transaction, a random symmetrical key (transaction key) is generated by the sender

of order data and/or ES’s that is used for encryption of both the order data and the ES’s. The

symmetrical key is transmitted to the recipient asymmetrically-encoded.

Based on the encryption process “V001” (see Appendix, Chapter Fehler! Verweisquelle
konnte nicht gefunden werden.) EBICS defines the encryption process “E002” as
having the following features:

 Symmetrical encryption algorithm (see Appendix, Chapter Fehler! Verweisquelle
konnte nicht gefunden werden.)

- Generation of the transaction key (see Appendix, Chapter Fehler!

Verweisquelle konnte nicht gefunden werden.)

- AES-128 (key length 128 bit) in CBC mode

- ICV (Initial Chaining Value) = 0

- Padding process in accordance with ANSI X9.23 / ISO 10126-2.

 RSA encryption of the transaction key, key length >= 2Kbit (2048 bits) and <=16Kbit

- Difference with regard to V001: 768

 Padding process for the RSA encryption: PKCS#1

- Difference with regard to V001: 0-padding.

As with E002 the minimum key length has not been changed in comparison to E001, the

identification and authentication keys need not to be changed when upgrading from E001 to

E002.

The process for asymmetrical encryption of the transaction key must be adapted for
EBICS as follows:

 Minimum length of the (secret) RSA key is 2048

 The padding process conforms with PKCS#1.

Concretely, these adaptations mean:

 The length of PDEK is equal to the length of the RSA key that is used (>= 2048)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 266

 Status: Final Version 3.0

 PDEK is generated from DEK via PKCS#1 padding

 EDEK is the result of the RSA encryption of PDEK.

Analogously, the process for decryption of the transaction key must also be adapted for
EBICS:

 PDEK is the result of the RSA decryption of EDEK

 The 128 lowest-value bits of PDEK form the secret key DEK.

In the context of “E002”, the process SHA-256 is used to form this hash value of the

public RSA key.

11.3.2.2 Formats

The compressed and encrypted ES’s and order data segments are embedded in the EBICS
messages as base64-coded binary data.

Within the EBICS messages, transmission of the asymmetrically-encrypted transaction key

takes place within an XML element of type DataEncryptionInfoType. This type is

defined in the XML schema definition file ebics_types_H005.xsd and its graphical

representation is contained in Diagram 100.

Diagram 100: Definition of the XML schema type DataEncryptionInfoType

The element ebicsRequest/body/DataTransfer/DataEncryptionInfo or

ebicsReponse/body/DataTransfer/DataEncryptionInfo, respectively, of type

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 267

 Status: Final Version 3.0

DataEncryptionInfoType is a part of the first EBICS request of an upload transaction (cf.

ebics_request_H005.xsd) or the first EBICS response of a download transaction (cf.

ebics_response_H005.xsd).

In contrast to the resolution, DataEncryptionInfoType does not contain any subscriber

details. This is not necessary, since the sender/recipient of the order data is always the

initiating party. The subscriber / customer ID of the initiating party is already a component of

the control data of the first EBICS request of every EBICS transaction and is firmly assigned

to the EBICS transaction.

In addition to the hash value of the public RSA key, the element

EncryptionPubKeyDigest also contains the version of the encryption process that is

used and the identifier of the hash algorithm used.

Therefore it is not necessary to change DataEncryptionInfoType when a new version

“E00n” is defined with altered parameters. This especially applies for versions that allow

SHA-224, SHA-256, SHA-384 or SHA-512 as one or more of the hash functions.

When placing the encrypted transaction key in the element TransactionKey it is principally

not filled up to the full length of the modulo of the RSA key for the encryption.

11.4 Replay avoidance via Nonce and Timestamp

11.4.1 Process description

The first EBICS request that serves for initialisation of an EBICS transaction contains the

elements “Nonce” and “Timestamp” that are together intended to prevent replaying of this

request.

“Nonce“ and “Timestamp“ form a functional unit for the avoidance of replay:

1. The customer system generates a random “Nonce” and sets a “Timestamp” at

the current point in time that the message is sent.

2. The bank system compares the received “Nonce” with a locally-stored list of

previously-received “Nonce” values. In addition, it verifies the deviation

between the “Timestamp” and the current time. If the “Nonce“ that has just

been received is present in the stored list or if the deviation of the “Timestamp”

is greater than a tolerance period specified by the financial institution, the

request is answered with the technical error code

EBICS_TX_MESSAGE_REPLAY.

3. If the “Nonce“ and “Timestamp” verification was carried out without errors, the

bank system stores the “Nonce” and “Timestamp” pair in the local list and

continues with the further processing of the message.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 268

 Status: Final Version 3.0

The bank system can delete “Nonce”/”Timestamp” pairs whose time stamps lie outside the

tolerance period from its list: Messages that contained such a pair would have already been

rejected due to the excessive deviation of the “Timestamp”. Therefore the fixed tolerance

period applies equally to the verification of new pairs as well as the deletion process of

stored pairs.

With the elements “Nonce” and “Timestamp”, this process guarantees that the first EBICS

request of a transaction is unambiguous. This prevents the bank from initialising new EBICS

transactions on the basis of old, replayed messages. At the same time, “Timestamp” restricts

the chronological necessity of the storage of “Nonce” values by the bank.

11.4.2 Actions of the customer system

11.4.2.1 Generation of “Nonce” and “Timestamp”

The customer system MUST fill out the following fields in the transaction phase “Initialisation”:

 ebicsRequest/header/static/Nonce with a cryptographically-strong random

number of length 128 bits

 ebicsRequest/header/static/Timestamp with the current time stamp for

transmission of the EBICS request (date and time in accordance with ISO 8601).

An example of syntactically-correct setting of the values “Nonce” and “Timestamp” is shown

in the following XML excerpt:

<?xml version="1.0" encoding="UTF-8"?>

<ebicsRequest

 xmlns="urn:org:ebics:H005"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:org:ebics:H005 ebics_request_H005.xsd"

 Version="H005" Revision="1">

 <header authenticate="true">

 <HostID>EBIXHOST<HostID>

 <Nonce>01A56FF768B3B36C5120E9904A7FB035</Nonce>

 <Timestamp>2005-06-22T17:07:34.123+02:00</Timestamp>

 […]

 </header>

 […]

</ebicsRequest>

Further information on correct setting of the two XML schema elements can be found under

http://www.w3.org/TR/xmlschema-2/#hexBinary (hexBinary) and

http://www.w3.org/TR/xmlschema-2/#dateTime (dateTime).

http://www.w3.org/TR/xmlschema-2/#hexBinary
http://www.w3.org/TR/xmlschema-2/#dateTime

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 269

 Status: Final Version 3.0

11.4.2.2 Behaviour in the event of error response
EBICS_TX_MESSAGE_REPLAY

The bank system uses the technical error code EBICS_TX_MESSAGE_REPLAY to signal

that the EBICS message that has just been sent by the client contains a “Nonce” value that

corresponds with that stored in the bank system, or that the “Timestamp” lies outside the

tolerance period.

When using cryptographically-strong random numbers as “Nonce” and when the financial

institution has selected sensible tolerance periods (guideline: a few hours), the likelihood of

an accidental collision can be disregarded due to the miniscule possibility of its occurrence.

Therefore after receipt of the report EBICS_TX_MESSAGE_REPLAY, the customer system

must take into account the possibility of a replay attack, an intolerably-imprecise clock setting

at the customer’s or the bank’s end, or an error in its own transaction management in the

assignment of “Nonce” values.

If the subscriber would nevertheless like to successfully transmit the EBICS message in

question, they must first regenerate the fields ebicsRequest/header/static/Nonce

and ebicsRequest/header/static/Timestamp in accordance with Chapter 11.4.2.1.

The remaining contents can be left unchanged.

11.4.3 Actions of the bank system

11.4.3.1 Verification of “Nonce” and “Timestamp”

When the bank system receives an initial EBICS message from a subscriber, it MUST carry

out the following actions to verify for message replay. If these verifications are all passed,

there is no message replay.

1. Matching of received “Timestamp” and local time stamp: Normalised to

UTC, the received “Timestamp” must be within the tolerance period that is

stretched around the current time stamp of the bank system. This tolerance

period will compensate for differences in precision between the clocks

involved in the systems and possibly also early/late changeover to

summer/wintertime. At the same time, the tolerance period determines when

the bank system can delete stored “Nonce”/”Timestamp” pairs. Messages

arriving with a “Timestamp” outside of the tolerance period will not be

accepted. “Nonce”/“Timestamp” pairs that have been stored in the past and

are now outside of the tolerance period can therefore be deleted.

The tolerance period must be set as a one-off occurrence by the bank system.

Here, large values (= large tolerance periods) increase the storage

requirements for valid “Nonce”/“Timestamp” pairs whilst low values (= smaller

tolerance periods) increase the risk of rejected EBICS messages as a result of

excessive clock differences between customer & bank systems.

If the received “Timestamp” is not within the tolerance period there is a risk of

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 270

 Status: Final Version 3.0

message replay. Therefore the bank system MUST reply with the technical

error code EBICS_TX_MESSAGE_REPLAY.

2. Comparison of the received “Nonce” with the locally-stored “Nonce”

values: All “Nonce”/“Timestamp” pairs that originate from valid EBICS

requests within the tolerance period are stored at the bank’s end. If the

received “Nonce” corresponds with a stored “Nonce” the bank system MUST

reply with the technical error code EBICS_TX_MESSAGE_REPLAY.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 271

 Status: Final Version 3.0

11.5 Initialisation letters

Initialisation letters for INI contain the public bank-technical subscriber certificate, initialisation

letters for HIA contain the subscriber’s public identification and authentication certificate and

the subscriber’s public encryption certificate.

11.5.1 Initialisation letter for INI (example with version A006 of the ES)

User Name Frank Sample

Date TT.MM.JJJJ

Time HH:MM:SS

Host ID BANKXXXX

Bank « name of the bank »

User ID Xxxxxxxx

Partner ID Yyyyyyyy

Version Name of signature version (i.e. A***)

Signature certificate

 Certificate issued to: name-surname or identifier (only present in case of CA issued certificates)

 Certificate issued by: name of CA (only present in case of CA issued certificates)

-----BEGIN CERTIFICATE-----
MIIC6DCCAdCgAwIBAgIIW+dFLrrgUj0wDQYJKoZIhvcNAQELBQAwKjEoMCYGA1UEAwwfRUJJQ1NQQVJUTkVSSURfRU

JJQ1NVU0VSSUQ7Qz1GUjAeFw0xNjExMjMxMTAwMDhaFw0yMTExMjQxMTAwMDhaMCoxKDAmBgNVBAMMH0VCSUN

TUEFSVE5FUklEX0VCSUNTVVNFUklEO0M9RlIwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCgDAuAyZ5Q

h18LOcu9H+w9fA+FjgIJoK3WkGF5zsyqWDyH9dlsHo7fp3FQXYaRLGi4VyVrSwgdDOF4gxopOnVO6nYevepqiriBD129YB3r

zMxgh/zwuQB60rRyEkr/5mvdddrWpj6RWErRTvQL5CZpeNZ9G/z96sFa7Rzi2W7K2oHr+piiC5moB2cqP54lnzOIx2Z5V5E9w/
Fxq8rIQP6XnXu8iZv9bZbF2jy9iED3umEav+9H0Gn67GFxy2i9OkKOGvcmLy9wwiDPF756t2xSrpNhVEFCek8pJPnDkQji93X

qtTSfZXezKuT2L59MhuICH4IMVOOD2xaOvsmHYml5AgMBAAGjEjAQMA4GA1UdDwEB/wQEAwIGQDANBgkqhkiG9w0BA

QsFAAOCAQEAWONno+PpSXFBciiqS76x0NkYiYTSk3rOUjK/Q/sC+FQX60TgBEbybLXvbGB2fkkUeoQopCuqWkVamJ01tn

D+sUPRducSMMh1YERLyTRk/15YjtoeeiEGJNKldGbaR9W6KaTMdY6SOIloyAm/t6HDDhpgL83rN8d5C1uiIpkrPbmqGJ5iOlk

JBWzRBxOXAxIGa9OZ4r/RolF7wAwSbfr2cB7rfySrJOUvdZYafwlKZVw8PtSft2JCOnrT5iz0+wGBCIboLiaBOSIO4o6Y+qAC1

5hbkfdEC5JiK0++vxsDHqHdggtTLU9DP36+KwEPyf8HjW2tCt8F4eucxT8GrfqZcw==

-----END CERTIFICATE-----

Hash of the signature certificate (SHA-256):

72 46 B6 32 85 DF 35 B8

1B 08 66 51 6D E0 FC 1D

DF 35 C7 DD F9 90 EA 6E

A2 C8 A0 ED A9 AB 32 49

 I hereby confirm the above public keys for my electronic signature.

 Date: Signature:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 272

 Status: Final Version 3.0

11.5.2 Initialisation letter for HIA (example)

User Name Frank Sample

Date TT.MM.JJJJ

Time HH:MM:SS

Host ID BANKXXXX

Bank « name of the bank »

User ID Xxxxxxxx

Partner ID Yyyyyyyy

Version Name of authentification signature (i.e. X***)

and name of encryption (i.e. E***)

Authentification Certificate - Type X***

-----BEGIN CERTIFICATE-----

MIIC6DCCAdCgAwIBAgIIMQ36MhxHh34wDQYJKoZIhvcNAQELBQAwKjEoMCYGA1UEAwwfRUJJQ1NQQVJUTkVSSURfR

UJJQ1NVU0VSSUQ7Qz1GUjAeFw0xNjExMjMxMTAwMDdaFw0yMTExMjQxMTAwMDdaMCoxKDAmBgNVBAMMH0VCSU

NTUEFSVE5FUklEX0VCSUNTVVNFUklEO0M9RlIwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDLoPa1O8X

J8L066vGQ9yzXm1NRyvjGxO4c/2GTNxnzAN9egbawaouw/OUyMZ0Pof6zRfcSm4NhxqnxkE18FIpBUzxZDEiDy0CITSHDm

knI7xJibk+zCdnHYE3QS5Kg7CeGXnZm30Gwl4UnOvfhKONgPK8/DRXdZDdzrSkaOt+Xqhi1i8qUerGoAEt7HNrs2gWfnirEBk

sj3Mj0OrTdIwdgWAuLEuk7CnA4gweqsRjha/EaXrQbUB4KJHOS2NsJczh4HKoaoHdEiyFq8Asm4mFhqQmarpv59zzsnnsep+

ho0z59+7ETBaW5KgQZsRE3dbZVHhPPONsPkQs6OLKacn5pAgMBAAGjEjAQMA4GA1UdDwEB/wQEAwIHgDANBgkqhki

G9w0BAQsFAAOCAQEAGw2nxKLtmzpEnPmA89tnSO1lFE49y/aGPYpabWjveR+P1VMglGNp7RWK+NVoZBBJuSBRqnmY

EbieQK2Mo/hShFVpMiEyRB5mdkoRu58PHl4pvpVVUtpVLHjjw8SVKXm8nw6l+8laYwRAuUn63pOl7de3Hy0DsrBYDwcxMpr

8RSC5l4ZZmeKlGwW1GqPzCUu74M+8eqZhlOD2TFruhlITsGO3zeQKeUZ/uy8Y9PMfrjPrtwrrGgx105agdyKHSuY3FkslsVrT

VNOHRQWcMP84zdNL1F2PuZofnJ1zc+unctpq3flHaZ663fUKDMKleKMOoXfQ13Vugg4cHXS/DiaE9A==

-----END CERTIFICATE-----

Hash of the authentification certificate (SHA-256):

8E 98 E6 46 FC E4 E9 5E

3E 50 5B A2 DF AA 8D 89

81 38 AE 17 B1 51 D3 12

87 96 F4 C1 FF BA E7 82

Encryption Certificate - Type E***

-----BEGIN CERTIFICATE-----

MIIC6DCCAdCgAwIBAgIIbZ163qos4DQwDQYJKoZIhvcNAQELBQAwKjEoMCYGA1UEAwwfRUJJQ1NQQVJUTkVSSURfR

UJJQ1NVU0VSSUQ7Qz1GUjAeFw0xNjExMjMxMTAwMDhaFw0yMTExMjQxMTAwMDhaMCoxKDAmBgNVBAMMH0VCSU

NTUEFSVE5FUklEX0VCSUNTVVNFUklEO0M9RlIwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQC3K5Lgva6

kZizCJVgFTIMjwjLvPl6wfWWP4ei/eqABeslZ6Zv9z/EauplDZzK0ulyIuCwtyO7V36EiCLZ0VS7V20izpblllwVyYVi950/Q9Pznvz0

p9KvwquheXLFHTwdUATuAEKHT8wc2347j5vRfYCxjxk1Xgk8sgbnyXBwJxy/XkaaALxEfY/60jUz7ip1jilB4AH03I+qn5lsI1d7E

ZFCTNwGIHXRgivLiNJ7sF5Q+MTqwZ2kYgReBzY6rDD7SMaOlcfopqDDkbyayohKnJxaSXUCpLTKjHfi2ZPhCxwyZRTKG16

y1jscbb4Asocmcsrg/SeHY/G1YERe6Xfa/AgMBAAGjEjAQMA4GA1UdDwEB/wQEAwIFIDANBgkqhkiG9w0BAQsFAAOCAQE

AfINilMSoo1O4ms3qQTTEH6KJLrC9UYRJMzTO0YpTXROOB4n3NHG/q1ElZU41UB8VcCrpWKWBroqx98oRNrFyOD1wGj

B+ine5bxT71ncALEk7ZneUSE3anZKaQV6mZbaJWRq/HSNTQ3G6Ml1LZ8/ZFy5Bt+VnYIXG/tASv5U/jW0+67ceNs/j94zzrH9

auvL7h6PP6260znqGKKgxuX6+XMT21ff7jyG3h+BwGWrtCwU1qmbZGW3wRYTR6x9kCoiV+WI5gqWSpOoai7Oi7nBGklrLb

eOL3UFSvrfjEhpS9az45vn0ldFs+C8eYSgs+ZsBWNcuu8UaLt9S57UmlaR8Gg==

-----END CERTIFICATE-----

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 273

 Status: Final Version 3.0

Hash of the encryption certificate (SHA-256):

E3 FA 11 A3 A4 40 CF 29

6D 25 1B 09 F4 1A 38 F7

33 E5 3A 96 FF DF 6C 5F

30 DF B2 9D 72 40 3E D7

 I hereby confirm the above public keys for my electronic signature.

 Date: Signature:

11.6 Generation of the transaction IDs

Transaction IDs are cryptographically-strong random numbers with a length of 128 bits. This

means that the likelihood of any two bank systems using the same transaction ID at the

same time is sufficiently small.

Transaction IDs are generated by cryptographic pseudo-random number generators (PRNG)

that have been initialised with a real random number (seed). The entropy of the seed should

be at least 100 bits.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 274

 Status: Final Version 3.0

12 Overview of selected EBICS details

12.1 Optional EBICS features

With EBICS, not all functions are defined as mandatory. Financial institutions that implement

the EBICS standard are free to support some administrative order types or functions within a

transaction sequence.

12.1.1 Optional administrative order types

The following EBICS order types CAN be supported by a financial institution (i.e. they are
optional):

 HAA (download retrievable order types)

 HKD (download customer’s customer and subscriber data)

 HTD (download subscriber’s customer and subscriber data)

12.1.2 Optional functionalities in the course of the transaction

A financial institution or a customer product CAN support the following EBICS functionalities

(i.e. they are optional for both sides):

 Preliminary verification (see Chapters 3.6 and 5.3)

 Recovery (see Chapters 3.4 and 5.4).

12.2 EBICS bank parameters

With EBICS administrative order type HPD (see also Chapter 9.2), the subscriber can

receive information relating to the financial institution’s specific access (AccessParams) and

protocol parameters (ProtocolParams).

Access parameters (AccessParams):

Parameter name # Meaning Example

URL 1..∞

URL or IP address for electronic

access to the financial institution

It is possible to specify several URLs.

Every URL with a valid_from-date

that has been reached (or if the

corresponding field is empty) is valid.

If a URL cannot be reached the

customer may use another valid

address. “www.die-bank.de”

URL@valid_from 0..1

Commencement of validity of URL/IP.

If not specified, the entry is valid with

immediate effect “2005-01-30T15:30:45.123Z“

Institute 1 Designation of the financial institution “Die Bank“

HostID 0..1 ID of the EBICS bank system “bank01“

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 275

 Status: Final Version 3.0

Protocol parameters (ProtocolParams):

Parameter name # Meaning
coll. admin.

order types

Version 1

 Permitted versions (listed in each case) for EBICS

protocol (Protocol), encryption (Encryption)

signature (Signature) and identification and

authentication (Authentication) all

Recovery 0..1 Support for the recovery of transactions all

PreValidation 0..1

Support for preliminary verification. If this parameter is

set, the financial institution thereby ensures that it

checks at least a part of the data that is transmitted by

the subscriber within the framework of preliminary

verification. However, the financial institution is not

obliged to comprehensively verify the data uploads

ClientDataDownload 0..1

Support of administrative order types HKD (download

customer data, Chapter 9.3) and HTD (download

subscriber data, Chapter 9.4). HKD, HTD

DownloadableOrder»

Data 0..1
Support of administrative order type HAA (download

retrievable BTF, Chapter 9.1). HAA

12.3 Security media of bank-technical keys

EBICS defines the following value categories for specification of the security medium of

(secret) bank-technical keys:

Security medium Setting

No specification 0000

Diskette 01dd

Chipcard 02dd

Other removable storage medium 03dd

Non-removable storage medium 04dd

In the above table, “dd” represents any number combination that is specified individually by

each institution.

12.4 Patterns for subscriber IDs, customer IDs, order IDs, hostIDs

The following table specifies the patterns of different IDs that are permitted in EBICS. In

addition, for each ID all of the XML types that are used in EBICS are listed to record

corresponding IDs.

ID Subscriber ID

/ ID of the

technical

subscriber

Customer ID Order ID Host ID

Pattern [a-zA-Z0- [a-zA-Z0- [A-Z]{1}[A-Z0- ---

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 276

 Status: Final Version 3.0

9,=]{1,35} 9,=]{1,35} 9]{3}

XML type
defined in

ebics_types_H

005.xsd

Both of the

type

UserIDType

PartnerIDType OrderIDType

HostIDType

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 277

 Status: Final Version 3.0

13 Appendix: Complete List of Administrative Order Type
Identifiers

The administrative order types in the following tables are explained in detail in Chapters:

4 Key management

8.3 Distributed electronic signature

10 HAC and

9 Other administrative order types).

Identifica

tion

Direction

of trans-

mission

Text

Optional/

mandatory

support by EBICS

bank server

solutions

BTD D Download of a file identified by a BTF structure Mandatory

BTU U Upload of a file identified by a BTF structure Mandatory

HAA D Download retrievable order types Mandatory

HAC D Download customer acknowledgement (XML-format) Mandatory

HCA U
Send amendment of the subscriber key for
identification and authentication and encryption

Mandatory

HCS U
Transmission of the subscriber key for ES,
identification and authentication and encryption

Mandatory

HEV D Download supported EBICS versions Mandatory

HIA U
Transmission of the subscriber key for identification
and authentication and encryption within the
framework of subscriber initialisation

Mandatory

HKD D Download customer’s customer and subscriber data Optional

HPB D Transfer the public bank key (download) Mandatory

HPD D Download bank parameters Mandatory

HTD D
Download subscriber’s customer and subscriber
data

Optional

HVD D Retrieve EDS state Mandatory

HVE U Add EDSsignature Mandatory

HVS U Cancellation of orders in the EDS Mandatory

HVT D Retrieve EDS transaction details Mandatory

HVU D Download EDS overview Mandatory

HVZ D Download EDS overview with additional informations Mandatory

H3K U

Transmission of all public keys (subscriber key, key
for identification and authentication and key for
encryption) for initialisation in case of CA-issued
certificates

Optional

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 278

 Status: Final Version 3.0

The concrete use of the administrative order types necessary for the electronic distributed
signature has to be agreed in the contract betweeen customer and his bank.

Further administrative order types for the key management:

Identifica

tion

Direction

of trans-

mission

Text Format

INI U Send password initialisation
Customer’s public key for the ES
(see Appendix Chapter 14)

PTK

D Download customer protocol
Format see Implementation Guide
(chapter 4.3.1, mandatory for
German banks)

PUB U
Send public key for signature
verification

Customer’s public key for the ES
(see Appendix Chapter 14)

SPR U Suspension of access authorisation
Transmission of an ES file with a
signature for a dummy file that only
contains a space (mandatory)

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 279

 Status: Final Version 3.0

14 Appendix: Signature process for the electronic signature

The utilised security processes must provide the electronic signature for the data that is to be
transmitted. In doing this, the following requirements profile is to be fulfilled:

 The signature may only be provided by the signatory so that the signatory cannot deny
the signature and so that it can be verified that the origin of any misuse can only be the
responsibility of the signatory.

 All potential recipients must be able to verify the correctness of the signature, wherein it
must be additionally guaranteed that this verification is also possible at a later point in
time (e.g. by legal entities).

 The signature must be in direct connection to the signed data contents so that it
simultaneously authenicates the corresponding data contents, allowing any potential
recipient (especially legal entities, even at a later point in time) to also verify the data
contents by means of the signature (data integrity verification).

 The signature solution must be applicable to any contents.

 From a performance viewpoint, the signature process must be useable on less-powerful
PCs with passable computing performance.

 The administration requirement for necessary storage of the data required for generation
of the signature, and especially verification of the signature (identifications) must be as
low as possible (simple key management).

 The concrete technical solution must be compatible with common operating systems that
may be used by the signatory and the recipient.

 The characters restricted to the operating system (CR, LF and Ctrl-Z) are not included in
the calculation of hash values of the A005/A006 ES.

This requirements profile can only be fulfilled by the use of asymmetrical cryptographic

processes.

Use of the electronic signature is strongly recommended for all data transmissions that do

not serve purely for information acquisition, insofar as an alternative is not agreed in the

special arrangements for individual processes.

A detailed description of the mathematical processes and data structures used must be

published free of charge for each security process that is used. This description must be

sufficient to allow a functionally-compatible product to be created by any manufacturer.

Furthermore, a positive certificate of conformity for the process as a whole and in particular

the mathematical procedures utilised therein must be provided by an accreditation agency

specified by the German banking sector.

With due consideration for these requirements, it is mandatory that the electronic signature

process described in the following text is supported by the bank from 1st April 2002.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 280

 Status: Final Version 3.0

14.1 Version A005/A006 of the electronic signature

With due consideration for the requirements in chapter 14, it is mandatory that the electronic

signature process described in the following text is supported by the bank.

For the signature processes A005 and A006 an interval of 2048 bit (minimum) and 4096 bit

(maximum) is defined for the key length.

14.1.1 Preliminary remarks and introduction

The following sub-chapters of chapter 14.1 contain the description of two new signature

mechanisms. The two signature mechanisms are both based on the signature schemes of

[PKCS1] and the usage of SHA-256 as algorithm for the hashing, but differentiated by the

usage of different methods of [PKCS1] for padding.

Since the completion of [A005] the naming for the signature mechanisms has been changed.

In contrast to [A005], where the two new signature mechanisms still have been named

A005_V1.5 and A005_PSS, the mechanisms will be called A005 and A006 in future. The

following table shows the relationship between future names, the old names of [A005] and

the names used in [PKCS1]:

future name name in [A005] [PKCS1]

A005 A005_V1.5 EMSA-PKCS1-v1_5 with SHA-256

A006 A005_PSS (with SHA-256
hash value as input)

EMSA-PSS with SHA-256 (with
SHA-256 hash value as input)

The following description of the two new signature mechanisms is based on the

corresponding paragraphs of the specification of SECCOS 6 [SECCOS6]. Both signature

mechanisms will be supported by a ZKA signature card, which is based on SECCOS 6 and

which contains the ZKA signature application [ZKASigAnw].

For the calculation of an electronic signature the ZKA signature application [ZKASigAnw]

offers two different keys, the so called AUT-key and the so called DS-key. Since banking

applications will in future use for the calculations of electronic signatures the AUT-key as well

as the DS-key, the following special conditions of SECCOS 6 for the usage of these keys

must be taken into account:

- For the AUT-key the signature will be calculated using the command INTERNAL

AUTHENTICATE. If used with the PSS padding of [PKSC1], the SECCOS smart card

will always calculate a hash value over the input data within the execution of the

command INTERNAL AUTHENTICATE. Since the application usually also calculates

a hash value over the actual message M before calling INTERNAL AUTHENTICATE,

this procedure will result in calculating the hash value twice, i. e. the value

hash(hash(M)) will be calculated.

- For this reason A006 will be defined in such a way that a prior calculated hash value

over the message M will be used as input for the signature mechanism rather than

the message M itself.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 281

 Status: Final Version 3.0

The asymmetric cryptographic algorithms supported by the SECCOS ICC are based on the

RSA algorithm with odd public key exponent ([RSA]).

In chapter 14.1.3 of this document, the principle of construction and the key components of

the public and private RSA keys according to annex F of [EMV CA], and [PKCS1] for odd

public exponents are explained.

A signature algorithm consists of an algorithm for signature generation and an inverse

algorithm for message recovery. The standard signature algorithm supported by the ZKA

SECCOS ICC is described in chapter 14.1.3 of this document.

The described signature algorithm based on the RSA algorithm is used by the ZKA SECCOS

ICC only in the context of signature mechanisms. A signature mechanism defines, in which

way a message M is transformed into a byte sequence which serves as input for the

signature generation by a signature algorithm. The byte sequence generated by a signature

mechanism is referred to as Digital Signature Input (DSI).

The ZKA SECCOS ICC supports several signature mechanisms. In chapter 14.1.4 of this

document, the new so called A005 and A006 mechanisms are described which are both

based on PKCS #1 padding and the usage of SHA-256 as hash algorithm.

14.1.2 RSA

An RSA key pair consists of

 a public key PK and

 a private key SK.

The public and private key consist of key components. RSA keys are also called

asymmetric keys.

For the generation of an RSA key pair with an odd public key exponent e, two different

primes p and q (prime factors) are used. e must be coprime to (p-1) and (q-1).

The corresponding private exponent d is defined by

e*d  1 mod kgV(p-1, q-1).

The primes p and q as well as the private exponent d have to be kept secret.

The product of the primes n = p*q is called modulus.

The public key PK of the RSA key pair consists of the components

 modulus n and

 public exponent e.

The private key SK of the RSA key pair may be represented by components in two ways

(see [PKCS1]):

1. Representation of SK by the components:

 modulus n and

 private exponent d,

2. Representation of SK by the components:

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 282

 Status: Final Version 3.0

 prime factor p,

 prime factor q,

 dp = d mod (p-1),

 dq = d mod (q-1) and

 qInv = q-1 mod p.

Of the first representation, only the component d has to be kept secret. The components of

the second representation are called Chinese Remainder Theorem-Parameters (CRT

parameters). All CRT parameters have to be kept secret.

The SECCOS ICC shall support the RSA algorithm with any odd public key exponent. In

most cases one of the odd public key exponents 3 or F4 = 216+1 is used.

In this document the following notation is used:

k denotes the bit length of the modulus n of an RSA key pair.

k is defined unambiguously by the equation 2k-1 <= n < 2k.

n is represented by a bit sequence:

n = bk bk-1 ... b1, with bk <> 0.

The integer value of n is defined by the leftmost bit bk being the most significant bit and the

rightmost bit b1 being the least significant bit of the binary representation of n.

For k there exist unique digits N >= 1 and 8 >= r >=1 with k = 8*(N-1) + r such that n may

also be represented by the bit sequence:

n = br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ... b1.

If r = 8, n may be represented as a sequence of N byte:

n = BN BN-1 ... B1, with BN <> '00'.

If r < 8, the bit sequence br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ... b1 8-r leading binary 0's are

added:

n = 0 ... 0 br br-1 ... b1 b8*(N-1) ... b8*(N-2)+1 ... b8 ... b1.

In this way n may be represented as a byte sequence

n = BN BN-1 ... B1, with BN <> '00'.

The integer value of n is not changed by the introduction of leading 0's in the binary

representation of n. Therefore the integer value of n is the same, whether n is represented by

a sequence of N byte or by a sequence of k bit.

N is the byte length of n.

N is defined unambiguously by the equation 28*(N-1)<= n < 28*N

14.1.3 Standard digital signature algorithm

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 283

 Status: Final Version 3.0

14.1.3.1 Standard signing function

Let SK be a private RSA key consisting of the modulus n and the private key exponent d or

consisting of CRT parameters. The associated public RSA key PK consists of the modulus n

and the public key exponent e.

Then a binary coded byte sequence x, its integer value between 0 and n-1 resulting from the

binary representation of x, may be signed with SK. Then x may be represented as a byte

sequence with a length of N byte and as a bit sequence with a length of k bit. The k-th bit of

the representing byte or bit sequence may have the value 1, but does not have to. If existent,

the bit b8*N ... bk+1 of the representing byte sequence have the value 0.

The following notation is used for the generation of a signature with the private key SK

consisting of n and d:

sign(SK)[x] = xd mod n

If the private key SK is represented by CRT parameters, sign(SK)[x] = xd mod n shall be

computed as follows:

sign(SK)[x] = s2 + h*q

where s2 and h shall be computed as follows:

s1 = xdp mod p,

s2 = xdq mod q,

h = qInv*(s1 - s2) mod p.

The exponentiations xd mod n, xdp mod p and xdq mod q shall be performed with the integer

value resulting from the binary representation of x.

The result of the signature generation is a byte sequence s resulting from the binary

representation of the integer value of the exponentiation xd mod n or from the binary

representation of the integer value of s2 + h*q. The integer value is between 0 and n-1. Then

s may be represented as a byte sequence with a length of N byte and as a bit sequence with

a length of k bit. The k-th bit of the representing byte or bit sequence may have the value 1,

but does not have to. If existent, the bit b8*N ... bk+1 of the representing byte sequence have

the value 0.

14.1.3.2 Standard recovery function

Let PK be a public RSA key consisting of the modulus n and the public key exponent e.

The plaintext may be recovered using PK from a binary coded byte sequence s, if the integer

value, resulting from the binary representation of s, is between 0 and n-1. Then s may be

represented as a byte sequence with a length of N byte and as a bit sequence with a length

of k bit. The k-th bit of the representing byte or bit sequence may have the value 1, but does

not have to. If existent, the bit b8*N ... bk+1 of the representing byte sequence have the value

0.

The following notation is used for the plaintext recovery:

recover(PK)[s] = se mod n

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 284

 Status: Final Version 3.0

The exponentiation se mod n shall be performed with the integer value resulting from the

binary representation of s.

The result of the plaintext recovery is an integer value between 0 and n-1. It may therefore

be represented as a byte sequence with a length of N byte and as a bit sequence with a

length of k bit. The k-th bit of the representing byte or bit sequence may have the value 1, but

does not have to. If existent, the bit b8*N ... bk+1 of the representing byte sequence have the

value 0.

It is valid for a RSA key pair PK and SK:

recover(PK)[sign(SK)[x]] = x

14.1.4 Signature Mechanisms A005 and A006

The digital signature mechanisms A005 and A006 are both based on the industry standard

[PKCS1] using the hash algorithm SHA-256. They are both signature mechanisms without

message recovery.

A hash algorithm maps bit sequences of arbitrary length (input bit sequences) to byte

sequences of a fixed length, determined by the Hash algorithm. The result of the execution of

a Hash algorithm to a bit sequence is defined as hash value.

The hash algorithm SHA-256 is specified in [FIPS H2]. SHA-256 maps input bit sequences of

arbitrary length to byte sequences of 32 byte length. The padding of input bit sequences to a

length being a multiple of 64 byte is part of the hash algorithm. The padding even is applied if

the input bit sequence already has a length that is a multiple of 64 byte.

SHA-256 processes the input bit sequences in blocks of 64 byte length.

The hash value of a bit sequence x under the hash algorithm SHA-256 is referred to as

follows:

SHA-256(x)

For building the value of the Digital Signature Input (DSI) out of the hash value [PKCS1]

defines two different encoding methods, called EMSA-PKCS1-v1_5 and EMSA-PSS.

Therefore two different digital signature mechanisms will be defined based on these two

encoding methods. The different mechanisms will be denoted A005 and A006.

14.1.4.1 Signature Mechanism A005

For the computation and verification of a digital signature with the signature mechanism

described in [PKCS1] using the encoding method EMSA-PKCS1-v1_5, the following points

have to be indicated:

 the hash algorithm HASH to be used,

 the byte length H of the generated hash values,

 the signature algorithm to be used and

 the maximal byte length N of the generated DSI to be allowed as input for the

signature algorithm.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 285

 Status: Final Version 3.0

The digital signature mechanism A005 is identical to EMSA-PKCS1-v1_5 using the hash

algorithm SHA-256. The byte length H of the hash value is 32.

Within ZKA smart cards RSA is used as signature algorithm. Therefore N is the byte length

of the modulus n of the applied RSA key.

In the following, digital signature generation and verification on the basis of the digital

signature mechanism A005 are described. The used abbreviations are defined in chapter

14.1.2.

14.1.4.1.1 Digital signature generation

According [PKCS1] (using the method EMSA-PKCS1-v1_5) the following steps shall be

performed for the computation of a signature for message M with bit length m.

1. The hash value HASH(M) of the byte length H shall be computed. In the case of A005

SHA-256(M) with a length of 32 bytes.

2. The DSI for the signature algorithm shall be generated.

The DSI is a sequence of N-1 byte constructed as follows:

Denotation Byte length Value

Block type 1 '01'

Padding field N-3-D 'FF..FF'

Separator 1 '00'

Digest-Info D BER-TLV coded data object with OID and

parameters of the hash algorithm and with the hash

value HASH(M)

Using SHA-256 the Digest-Info is structured as follows:

Tag Length

(in byte)

Value Description

'30' '31' Tag and length of SEQUENCE

'30' '0D' Tag and length of SEQUENCE

'06' '09' '60 86 48 01 65

03 04 02 01'

OID of the SHA-256 (2 16 840 1 101 3 4 2 1)

'05' '00' - TLV coding of ZERO

'04' '20' 'XX..XX' hash value

The byte length D of the Digest-info has the value 51. The padding field has a length

of N-54 byte. Since N has at least the value 128 (for the minimal key length of 1024

bits), it must be padded at least with 74 byte 'FF'.

3. A signature shall be computed using the DSI with the standard algorithm for the

signature generation described in section 14.1.3.1.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 286

 Status: Final Version 3.0

Since the DSI is a byte sequence of length N-1, the integer value resulting from the

binary representation of the DSI is always less than the value of the modulus n.

The signature may be represented as a byte sequence with the byte length N. In the

representation of the modulus n as a byte sequence the bit bk has the value 1 and the

bit b8*N b8*N-1 ... bk+1 have, if existent, the value 0. In the representation of the signature

as a byte sequence the bit b8*N b8*N-1 ... bk+1 therefore also shall have the value 0.

14.1.4.1.2 Digital signature verification

According to [PKCS1] (using the method EMSA-PKCS1-v1_5) the following steps shall be

performed for the verification of a signature. The signature to be verified and the message M'

require to be available as byte sequences.

1. The signature must be represented as a byte sequence with the byte length N. In the

representation of the signature as a byte sequence the bit b8*N b8*N-1 ... bk+1 ,if existent,

shall have the value 0. If this is not the case, the signature shall be rejected.

The integer value resulting from the binary representation of the signature shall be

less than n. If this is not the case, the signature shall be rejected.

2. The standard algorithm for plaintext recovery described in section 14.1.3.1 shall be

applied to the signature. The result has to be represented as a byte sequence of N-1

byte length. If this is not the case, the signature shall be rejected.

3. A DSI' with a length of N-1 byte shall be generated from the message M' as described

in steps 1. and 2. of section 14.1.4.1.1.

The DSI' shall be compared with the plaintext recovered in step 2. If the values match, the

verification of the signature was successful. Otherwise the signature shall be rejected.

14.1.4.1.3 Notation

The following notation is used for the computation of a signature for the message M with the

signature mechanism A005 and the private RSA key SK:

s = signA005(SK)[M].

The following notation is used for the verification of a signature s for the message M with the

signature mechanism A005 and the public RSA key PK:

 verifyA005(PK)[s,M].

14.1.4.2 Signature mechanism A006

For the computation and verification of a digital signature with the signature mechanism

described in [PKCS1] using the encoding method EMSA-PSS, he following points have to be

indicated:

 the hash algorithm HASH to be used,

 the byte length H of the generated hash values,

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 287

 Status: Final Version 3.0

 the byte length S of the salt to be used,

 the mask generation function to used,

 the signature algorithm to be used,

 the maximal bit length k of the generated DSI to be allowed as input for the signature

algorithm and

 the maximal byte length N of the generated DSI to be allowed as input for the

signature algorithm.

The digital signature mechanism A006 is based on EMSA-PSS using the hash algorithm

SHA-256. The byte length H of the hash value is 32.

The length S of the salt is defined by the used hash algorithm, i.e. the length S of the salt

shall be the byte length H of the hash value.

For A006 only the mask generation function MGF1 as described in [PKCS1] will be used.

Notation: k is length of the modulus n (in bits) of the applied RSA key. The length of the DSI

(in bits) is k – 1 and will be denoted as emBits. The length of the modulus n (in bytes) is

denoted as N. The length of the DSI (in bytes) is denoted as emLen.

14.1.4.2.1 Mask generation function MGF1

The mechanism described in [PKCS1], sections 8.1 and 9.1 uses a mask generation function

described in [PKCS1], section B.2.

MGF1 is a mask generation function based on a hash algorithm HASH, which calculates

hash values with the byte length H. MGF1 creates a byte sequence of a given length

maskLen from a given input value (seed) mgfSeed as described in the following:

1. Let T be an empty byte sequence.

2. For a counter from 0 to maskLen / H – 1, do the following:

a. Convert the counter to a byte sequence C with the length of 4 bytes.

b. Calculate the hash value HASH (mgfSeed | C) and concatenate this to the

byte sequence T:

T = T | HASH(mgfSeed | C)

3. The result MGF1(mfgSeed, maskLen) will be the leftmost maskLen bytes of the byte

sequence T.

Note that maskLen / H defines the smallest integer larger than or equal to (maskLen / H).

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 288

 Status: Final Version 3.0

14.1.4.2.2 Digital signature generation according to EMSA-PSS

According to [PKCS1] (using the method EMSA-PSS), sections 8.1.1 and 9.1.1 the following

steps shall be performed for the computation of a signature for message M with bit length m.

1. The hash value HASH(M) of the byte length H shall be computed. If EMSA-PSS will

be used as basis for the signature mechanism A006, the hash value SHA-256(M) with

the length of 32 bytes will be calculated.

2. The input value DSI for the signature algorithm shall be generated as follows:

Generate a random number of S bytes to be used as salt.

Build the message M' as follows:

M' = '00 00 00 00 00 00 00 00' | HASH(M) | salt

Compute over M' the hash value HASH(M') of the byte length H.

Build a padding string PS with a length of emLen – H – S – 2 bytes consisting of '00'

bytes.

Let DB = PS | '01' | salt; DB is a byte sequence of the length emLen – H – 1.

Let dbMask = MGF(HASH(M'), emLen – H – 1) the result of the mask generation

function. If EMSA-PSS is used as basis for A006, the function MGF1 as described in

14.1.4.2.1 will be used.

Let maskedDB = DB  dbMask.

Set the leftmost 8*emLen – emBits bits of the leftmost byte in maskedDB to zero.

Let DSI = maskedDB | HASH(M') | 'BC'.

3. A signature shall be computed using the byte sequence DSI as input to the standard

signing function described in 14.1.3.1.

It has to be regarded, that the DSI is represented as a sequence of emLen byte. The

integer value resulting from the binary representation of the DSI is always less than

the value of the modulus n, since the bit length emBits of the DSI is less than the bit

length of the modulus.

The signature may be represented as a byte sequence with the byte length N. In the

representation of the modulus n as a byte sequence the bit bk has the value 1 and the

bit b8*N b8*N-1 ... bk+1 have, if present, the value 0. In the representation of the signature

as a byte sequence the bit b8*N b8*N-1 ... bk+1 therefore also shall have the value 0.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 289

 Status: Final Version 3.0

14.1.4.2.3 Digital signatur verification according to EMSA-PSS

According to [PKCS1] (using the method EMSA-PSS), sections 8.1.2 and 9.1.2, the following

steps shall be performed for the verification of a signature. The signature to be verified and

the message M must to be available as byte sequences.

1. The signature must be represented as a byte sequence with the byte length N. In the

representation of the signature as a byte sequence the bit b8*N b8*N-1 ... bk+1 ,if present,

shall have the value 0. If this is not the case, the signature shall be rejected.

The integer value resulting from the binary representation of the signature shall be

less than n. If this is not the case, the signature shall be rejected.

2. The standard function for plaintext recovery shall be applied as described in 14.1.3.2

to the signature. The result has to be represented as a byte sequence of emLen byte

length. If this is not the case, the signature shall be rejected.

3. The recovered plaintext shall be checked as follows:

The hash value HASH(M) of the byte length H shall be computed.

The least significant byte of the recovered plaintext shall have the value 'BC'. If this is

not the case, the signature shall be rejected.

Let maskedDB be the leftmost emLen – H – 1 bytes of the recovered plaintext and let

HM' be the next H bytes of the recovered plaintext.

If the leftmost 8*emLen – emBits bits of the most significant byte of maskedDB are

not all equal to zero, the signature shall be rejected.

Let dbMask = MGF (HM', emLen – H – 1), using the function MGF1.

Let DB = maskedDB  dbMask.

Set the leftmost 8*emLen – emBits bits of the leftmost byte in DB to zero.

If the emLen – H – S – 2 leftmost bytes of DB are not all equal to '00' or if the byte at

the position emLen – H – S – 1 does not have the value '01', the signature shall be

rejected.

Let salt be the rightmost S bytes of DB.

Let

M' = '00 00 00 00 00 00 00 00' | HASH(M) | salt

and compute the hash value HASH(M') of the byte length H.

If HM' = HASH(M') the verification of the signature was successful. Otherwise the signature

shall be rejected.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 290

 Status: Final Version 3.0

14.1.4.2.4 Notation for EMSA-PSS

The following notation is used for the computation of a signature for the message M with the

signature mechanism according to [PKCS1] using EMSA-PSS and the private RSA key SK:

s = signEMSA-PSS(SK)[M].

The following notation is used for the verification of a signature s for the message M with the

signature mechanism according to [PKCS1] using EMSA-PSS and the public RSA key PK:

 verifyEMSA-PSS(PK)[s,M].

14.1.4.2.5 Digital signature generation according to A006

As already mentioned banking applications will also use the AUT-key for the generation of a

signature, which was formerly intended only for authentication purposes. Using the command

INTERNAL AUTHENTICATE with the AUT-key and the signature mechanism EMSA-PSS

the SECCOS smart card will always calculate internally a hash value over the input data of

the command. Since banking applications have to calculate signatures over messages which

are usually quite long, these messages cannot be given directly as input data with the

command INTERNAL AUTHENTICATE to the SECCOS smart card. For this reason the

banking application will also calculate a hash value over the message. This hash value will

be the input data of the command INTERNAL AUTHENTICATE. Hence, using the AUT-key

and EMSA-PSS, the hash value will be calculated twice. For this reason the signature

mechanism A006 will be defined as follows.

To calculate a signature s over a message M with the private key SK using the signature

mechanism A006 the following steps have to be performed:

- calculate the hash value HM = SHA-256(M).

- then calculate the signature s = signEMSA-PSS(SK)[HM].

14.1.4.2.6 Digital signature verification according to A006

To verify a signature s over a message M with the public key PK using the signature

mechanism A006 the following steps have to be performed:

- calculate the hash value HM = SHA-256(M).

- then verify the signature using verifyEMSA-PSS(PK)[s,HM].

14.1.4.2.7 Notation for A006

The following notation is used for the computation of a signature for the message M with the

signature mechanism A006 and the private RSA key SK:

s = signA006(SK)[M].

The following notation is used for the verification of a signature s for the message M with the

signature mechanism A006 and the public RSA key PK::

 verifyA006(PK)[s,M].

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 291

 Status: Final Version 3.0

14.1.5 References

 [EMV CA] Europay International, MasterCard International and Visa International,

Integrated Circuit Card Specifications for Payment Systems, Annexes, Version

3.1.1, 31.05.1998

[FIPS H2] FIPS 180-2, Secure Hash Signature Standard, Federal Information Processing

Standards Publication 180-2, U. S. Department of Commerce / N.I.S.T.,

National Technical Information Service, August 2002

[PKCS1] PKCS #1: RSA Encryption Standard, Version 2.1, 14.06.2002

[RSA] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital

signatures and public key cryptosystems, Communications of the ACM,

vol. 21, n. 2, 1978, 120-126

[SECCOS6] Interface Specifications for the SECCOS ICC, Secure Chip Card Operating

System (SECCOS), Version 6.1, 19.05.2006 (with revisions as on October

16th, 2006)

[ZKASigAnw] Interface Specifications for the SECCOS ICC, Digital Signature Application for

SECCOS 6, Version 1.1, 25.05.2007

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 292

 Status: Final Version 3.0

14.1.6 XML structure of signature versions A005/A006

The following diagram illustrates the structure of the bank-technical electronic signature (ES)

in structured form:

Diagram 101: OrderSignatureData – structured electronic signature

OderSignatureData may only be transmitted as part of an XML document with root

element UserSignatureData. Detailed information and illustrations see chapter 3.5.3 .

With the intention to utilize the ES in structured form outside of EBICS, all necessary data

structures have been defined in an independent XSD file (ebics_signature.xsd) which can be

downloaded from http://www.ebics.org (see “Specification”).

For the transport of the public signature key the format SignaturePubKeyInfoType is

used (see chapter 4.2).

Kommentar [SW1]: Deletion of
chapter 14.2 (A004-description); CR
No. EB-14-01

http://www.ebics.org/

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 293

 Status: Final Version 3.0

15 Appendix: Standards and references

The EBICS detailed concept refers to a number of processes, algorithms and format

stipulations.

The associated standard document identifications and links to the referenced documents are

listed in the following section.

Standard Characteristics
Standard

identification
Reference

EBICS

Multi-bank

capable

interface for

Internet-based

communication

H005

http://www.ebics.org, category

„Specification“

(XML-Schema)

ZIP

Universal

compression

algorithm

RFC 1950,

RFC 1951

http://www.ietf.org/rfc/rfc1950.txt

http://www.ietf.org/rfc/rfc1951.txt

base64

Coding format

for textual byte

code transport

RFC 1421,

RFC 2045

http://www.ietf.org/rfc/rfc1421.txt

http://www.ietf.org/rfc/rfc2045.txt

UTF-8

Coding format

for Unicode

characters

RFC 3629

(ISO 10646)

http://www.ietf.org/rfc/rfc3629.txt

HTTP 1.1

Internet

application

protocol

RFC 2616
http://www.ietf.org/rfc/rfc2616.txt

TLS
Transport layer

encryption

RFC 2246,

RFC 3268

(+AES),

RFC 2818

(HTTP via

TLS)

http://www.ietf.org/rfc/rfc2246.txt

http://www.ietf.org/rfc/rfc3268.txt

http://www.ietf.org/rfc/rfc2818.txt

TCP

Internet

transmission

protocol

RFC 793
http://www.ietf.org/rfc/rfc793.txt

IP(v4)
Internet network

protocol
RFC 791

http://www.ietf.org/rfc/rfc791.txt

XML

Hierarchical

documentation

language

(W3C-Rec.)
http://www.w3.org/TR/REC-xml/

XML

signature

Process for

digital signature
RFC 3275

http://www.ietf.org/rfc/rfc3275.txt

http://www.w3.org/TR/xmldsig-core/

http://www.ebics.org/
http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.w3.org/TR/REC-xml/
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmldsig-core/

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 294

 Status: Final Version 3.0

of XML

documents

X.509v3

Format and

profile for PKI

certification data

RFC 5280
http://www.ietf.org/rfc/rfc5280.txt

Country

codes

Format for

country

abbreviations

RFC 1766,

ISO 639

http://www.ietf.org/rfc/rfc1766.txt

Time

stamp

Format for date

& time stamp

ISO 8601

(2004)

http://www.iso.org/iso/en/CatalogueDetail»
Page.CatalogueDetail?CSNUMBER=40874

SHA-1 Hash algorithm

RFC 3174,

FIPS 180-2

(SHA gen.)

http://www.ietf.org/rfc/rfc3174.txt

http://csrc.nist.gov/publications/fips/fips»
180-2/fips180-2withchangenotice.pdf

AES

Symmetrical

encryption

algorithm

FIPS 197

http://csrc.nist.gov/publications/fips/fips197/»
fips-197.pdf

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874
http://www.ietf.org/rfc/rfc3174.txt
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 295

 Status: Final Version 3.0

16 Appendix: Glossary

Administrative

Order type

Three-figure alphanumeric code that identifies a type of administrative

EBICS order.

AES “Advanced Encryption Standard”: a symmetrical encryption algorithm

that is intended to replace DES. In the EBICS context, AES is used for

TLS as well as for the encryption of bank-technical order data (in

accordance with RFC 3268).

Bank system Components within the responsibility sphere of the financial institution

that are involved in the implementation of an EBICS transaction. This

includes both the bank-technical target system and the HTTP server(s)

that receive the EBICS message and forward it to the bank-technical

target system.

Bank-technical

electronic

signature

Subscriber’s ES of signature class “E”, “A” or “B”, via which the

processing of an order is authorised.

Bank-technical

key

(public/private)

RSA key pair whose private key is used for configuring the bank-

technical electronic signature and whose public key is used for its

verification.

Bank-technical

order data

Data that is required for the processing of an order. The format of this
data depends on the BTF odentifier and/or administrative order type.
The majority of the data formats that are used in EBICS have already
been defined. The data formats of the administrative order types that
have been newly defined for EBICS (such as e.g. Distributed
Electronic Signature order types) are defined in EBICS by means of an
XML schema.
The order data of an order is transparently embedded (in compressed,

encrypted form) in EBICS messages.

Bank-technical

target system

Component within the responsibility sphere of the financial institution

that is responsible for the administration of customers/subscribers and

the processing of bank-technical orders. Within the framework of the

EBICS specification, the bank-technical target system can be viewed

as a “secure black box”.

base64 Coding algorithm and format in accordance with RFCs 1421 & 2045.

The result of a base64 coding run can be completely represented in

ASCII.

BTF identifier Set of information which defines the kind of order (primarily defined by

the XML structure “service”).

CA Abbreviation for certificate authority

Certificate If the term “certificate” is used in the EBICS specification documents

the public key format x.509 is meant.

Keys certified by a CA are called CA-issued certificates.

In the EBICS documents the hash values of keys are understood as

the composition of the hash value of the certificate.

Client Communications unit that sends EBICS requests and receives EBICS

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 296

 Status: Final Version 3.0

responses. See also “Customer system”.

Control data Data in an EBICS message that is required for controlling the flow of

an EBICS transaction. This is data for authentication of the subscriber

by the bank system, data for identification of the next transaction step

that is to be carried out, or technical return codes, or order parameters,

or data for preliminary verification or bank-technical return codes.

Customer Organisational unit (company or private person) that concludes a

contract with the financial institution. In this contract it will be agreed as

to which business transactions the customer will conduct with the

financial institution, which accounts are concerned, which of the

customer’s subscribers work with the system and the authorisations

that these subscribers will possess.

Customer system Components that are used by subscribers to upload orders to the

financial institution and to obtain information on orders or subscriber

accounts from the financial institution.

Distributed bank-

technical

signature

See “Distributed Electronic Signature”.

Download

transaction

EBICS transaction for transmission of a download order. The

transaction phases of a download transaction are: transaction

initialisation, data transfer, acknowledgement of the download data.

EBICS message EBICS request from a subscriber or EBICS response from the financial

institution. EBICS messages are mainly composed of control data, the

identification and authentication signature and bank-technical data.

EBICS request Request from a subscriber in XML format that has been defined in

EBICS.

EBICS response Response from the financial institution in XML format that has been
defined in EBICS.

EBICS transaction Sequential flow of EBICS transaction phases that are necessary to

transmit an order to the bank-technical target system. EBICS

transactions can be upload or download transactions.

EBICS transaction

administration

Bank system component that is responsible for the administration of

EBICS transactions.

EBICS transaction

phase

Sequence of connected EBICS transaction steps. A differentiation is

drawn in EBICS between the following transaction phases:

Transaction initialisation (“initialisation”), data transfer (“transfer”) and

acknowledgement (“receipt”) .

EBICS transaction

step

Pair comprising an EBICS request and the associated EBICS

response. An EBICS request is always initiated by the customer

system.

EDS See “Electronic Distributed Signature”.

Electronic

Distributed

Signature

A process where in bank-technical electronic signatures can be

supplied for a particular order, irrespective of time or place. See

Chapter 8 for details. The abbreviation is “EDS”. In HAC-Codes the

previous abbreviation VEU remains.

Electronic Voluntary signature of the order data in an upload order by a

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 297

 Status: Final Version 3.0

signature (ES) subscriber with which the corresponding order can be submitted or

authorised, or also a financial institution signature for download data.

In EBICS, ES’s are used in accordance with the Appendix (Chapter

14) that are at least configured in accordance with process A005

Encryption key

(public/private)

RSA key pair whose public key is used by the communications

partners for encryption of the symmetrical transaction key and whose

private key is used by owners for decrypting the same transaction key.

ES See “Electronic signature”.

ES signature key See “Bank-technical key (public/private)”.

Host ID EBICS host ID for the identification of the EBICS bank computer

system in every request message of the customer system..The

financial institution communicates the EBICS host ID together with the

URL for the bank access to the customer.

Identification and

authentication key

(public/private)

RSA key pair whose private key is used for configuring the
identification and authentication signature and whose public key is
used for its verification.

Identification and

authentication

signature

Digital signature to ensure the authenticity of the control data in an
EBICS message. XML Signature is used as a signature format.

Key management Component of the bank system that is responsible for the assignment

of public keys to subscribers and that controls access to the keys it

administrates.

Order Bank-technical or system-related business transaction whose type is

identified via BTF identifiers

Order data See “Bank-technical order data”

Order parameters Additional order parameters that the client transmits to the server in
the first transaction step. See Chapter 3.11.

Order ID Unambiguous order ID assigned by the bank server and submitted to
the client system in the response of an upload transaction.
It especially serves the synchronizing of order data and electronic
signatures in a second upload.
The application is to ensure the allocation of unambiguous order IDs
per each customer ID and per BTF identifiers.
Structure of a 4-digit order ID:
1st position: Alphabetic character (A–Z), selectable freely
2nd to 4th position: Alphanumerical characters (A–Z or 0–9) in
ascending order

OrderData See “Order type” and “BTF identifier”.

Partner See “Customer”

Segmentation Division of the data volume of the order data after compression,

encryption and base64-coding into segments with a size of max. 1 MB.

See also Chapter 7.

Server Communications unit that receives EBICS requests and sends EBICS

responses. See also “Bank system”.

Signature class Relates to subscriber’s ES’s.

EBICS defines the following signature classes: Individual signature

(type “E“), First signature (type “A“), Second signature (type “B“),

Transport signature (type “T“). See Chapter 3.5.1 for details.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 298

 Status: Final Version 3.0

Subscriber Human users (“non-technical subscribers”) or a technical system

(“technical subscriber”) that is/are assigned to a customer. Is identified

by the combination of subscriber ID and customer ID.

The technical subscriber serves for the data exchange between

customer and financial institution. It must not be put on the same level

as a technical ID for a service provider.

Subscriber

initialisation

A process according to which the public subscriber keys are

transmitted to the financial institution and are then activated by the

financial institution. After successful execution of subscriber

initialisation, subscriber are set in the bank system to the state

“Ready”.

TLS “Transport Layer Security”: Protocol in accordance with RFCs 2246 &

3268 for the cryptographic security of messages that use TCP/IP as a

transmission protocol. In the EBICS context, TLS is used for the

transport encryption of HTTP messages (HTTPS).

Transaction See “EBICS transaction”.

Transaction key Symmetrical key that is used within the EBICS transaction for the

encryption of bank-technical data.

Transaction

management

See “EBICS transaction management”.

Transaction phase See “EBICS transaction phase”.

Transaction step See “EBICS transaction step”.

Transport
signature (TES)

Subscriber’s ES of signature class “T” via which the order is submitted

(but its processing is not authorised).

Trust anchor In the context of certification verification, a trust anchor (point of trust)
is a certificate that is considered trustworthy. This is usually a
certificate from a CA (Certification Authority).

Upload

transaction

EBICS transaction for transmission of an upload order. The transaction

phases of an upload transaction are: Transaction initialisation, data

transfer.

UTF-8 “Unicode Transformation Format“, a character encoding standard

according to RFC 3629.

ZIP Loss-free compression algorithm according to RFCs 1950 and 1951.

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 299

 Status: Final Version 3.0

17 Table of diagrams

Diagram 1: XML schema symbols 14

Diagram 2 Nesting of activities 15

Diagram 3: Root structure of the EBICS protocol 23

Diagram 4: XML structures UserSignatureData for the ES’s of an order (in structured

format) 29

Diagram 5: X509DataType 33

Diagram 6: Possible characteristics for the order parameters (OrderParams) 36

Diagram 7: Example of the sequence of an EBICS transaction for an upload order 38

Diagram 8: Example of the sequence of an EBICS transaction for a download order 39

Diagram 9: Definition of the XML schema type AuthenticationPubKeyInfoType 43

Diagram 10: Definition of the XML schema type SignaturePubKeyInfoType 43

Diagram 11: Definition of the XML schema type EncryptionPubKeyInfoType 43

Diagram 12: Necessary steps prior to actual processing of business transactions via

EBICS (using INI / HIA) 45

Diagram 13: Process example: Subscriber initialisation followed by download and

verification of the bank keys (using INI / HIA) 46

Diagram 14: Processing of an INI request at the bank’s end 50

Diagram 15: Processing an HIA request at the bank’s end 53

Diagram 16: State transition diagram for subscribers 56

Diagram 17: Definition of the XML schema element SignaturePubKeyOrderData for

INI order data (identical to PUB, see respective chapter) 57

Diagram 18: Definition of the XML schema element HIARequestOrderData for HIA

order data 57

Diagram 19: EBICS request for administrative order type INI 59

Diagram 20: EBICS response for administrative order type INI 60

Diagram 21: EBICS request for administrative order type HIA 61

Diagram 22: EBICS response for administrative order type HIA 62

Diagram 23: Definition of the XML schema element H3KRequestOrderData for H3K

order data 64

Diagram 24: Processing of an HPB request at the bank’s end 67

Diagram 25: Definition of the XML schema element HPBRequestOrderData for HPB

order data 69

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 300

 Status: Final Version 3.0

Diagram 26: EBICS request for administrative order type HPB 71

Diagram 27: EBICS response for administrative order type HPB 72

Diagram 28: Changing the bank-technical subscriber key via PUB 76

Diagram 29: Changing the authentication key and encryption key via HCA 77

Diagram 30: Changing the bank-technical subscriber key, the authentication key, and

encryption key via HCS 78

Diagram 31: Definition of the XML schema element SignaturePubKeyOrderData for

PUB order data (identical to INI, see own chapter) 79

Diagram 32: Definition of the XML schema element HCARequestOrderData for HCA

order data 79

Diagram 33: Definition of the XML schema element HCSRequestOrderData for HCS

order data 80

Diagram 34: Error-free sequence of an upload transaction 90

Diagram 35: EBICS request for transaction initialisation for a business transaction

format upload 94

Diagram 36: XML document that contains the ES’s of the signatory of the upload

order 94

Diagram 37: EBICS response for transaction initialisation for the upload order 95

Diagram 38: EBICS request for transmission of the last order data segment of a

business transaction format order 96

Diagram 39: EBICS response for transmission of the last order data segment for a

business transaction form order 98

Diagram 40: BTF structure for upload (using restricted service type) 100

Diagram 41: Detailed description of the process step “Authentication check of the

EBICS request” 109

Diagram 42: Detailed description of the process step “User related order checks” 110

Diagram 43: Detailed description of the process step “Creation of an EBICS

transaction” 111

Diagram 44: Processing the EBICS request from transaction initialisation 112

Diagram 45: Detailed description of the process step “EBICS transaction verification” 115

Diagram 46: Processing an EBICS request for transmission of an order data segment

(part 1) 116

Diagram 47: Processing an EBICS request for transmission of an order data segment

(part 2) 117

Diagram 48: Termination of the recovery of an upload transaction due to the

maximum number of recovery attempts being exceeded 120

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 301

 Status: Final Version 3.0

Diagram 49: Recovery of an upload transaction with explicit synchronisation between

customer system and bank system 121

Diagram 50: EBICS response with technical error EBICS_TX_RECOVERY_SYNC 122

Diagram 51: Error-free sequence of a download transaction 123

Diagram 52: EBICS request for transaction initialisation for download of an end of

period statement (MT940) 126

Diagram 53: EBICS response for transaction initialisation for the download of an end

of period statement (MT940) 127

Diagram 54: EBICS request for transmission of the next order data segment for the

download of an end of period statement (MT940) 129

Diagram 55: EBICS response for transmission of the last order data segment for the

download of an end of period statement (MT940) 130

Diagram 56: EBICS request for the acknowledgement of download data 131

Diagram 57: EBICS response for the acknowledgement of download data 133

Diagram 58: BTF structure for download (using restricted service type) 134

Diagram 59: Processing the EBICS request of the initialisation phase of a download

transaction 139

Diagram 60: Detailed description of the process step “Download transaction

verification” 141

Diagram 61: Processing an EBICS request for requesting a order data segment 142

Diagram 62: Processing of an EBICS request for acknowledgement within the

framework of a download transaction 143

Diagram 63: Termination of the recovery of a download transaction due to the

maximum number of recovery attempts being exceeded 145

Diagram 64: Recovery of a download transaction with explicit synchronisation

between customer system and bank system 146

Diagram 65: EBICS response with technical error EBICS_TX_RECOVERY_SYNC 147

Diagram 66: Flow diagram for EDS 154

Diagram 67: HVUOrderParams 157

Diagram 68: HVUResponseOrderData 159

Diagram 69: HVUSigningInfoType (to SigningInfo) 159

Diagram 70: SignerInfoType (to SignerInfo) 160

Diagram 71: HVUOriginatorInfoType (to OriginatorInfo) 160

Diagram 72: HVZOrderParams 166

Diagram 73: HVZResponseOrderData 170

EBICS specification

EBICS detailed concept, Version 3.0

© EBICS SCRL Page: 302

 Status: Final Version 3.0

Diagram 74 HVZPaymentOrderDetailsStructure 170

Diagram 75: HVDOrderParams 181

Diagram 76: HVDResponseOrderData 184

Diagram 77: HVTOrderParams 189

Diagram 78: HVTResponseOrderData 194

Diagram 79: HVTOrderInfoType (to OrderInfo) 195

Diagram 80: HVTAccountInfoType (to AccountInfo) 196

Diagram 81: HVEOrderParams 206

Diagram 82: HVSOrderParams 209

Diagram 83: non-restricted BTF service structure only for HVU and HVZ request 212

Diagram 84: “standard” BTF service structure for all other cases 213

Diagram 85: HAAResponseOrderData 214

Diagram 86: HPDResponseOrderData 217

Diagram 87: HPDAccessParamsType (to AccessParams) 217

Diagram 88: HPDProtocolParamsType (to ProtocolParams) 218

Diagram 89: HPDVersionType (to Version) 219

Diagram 90: HKDResponseOrderData 225

Diagram 91: PartnerInfoType (to PartnerInfo) 226

Diagram 92: AddressInfoType (to AddressInfo) 227

Diagram 93: BankInfoType (to BankInfo) 227

Diagram 94: AuthOrderInfoType (to OrderInfo) 228

Diagram 95: UserInfoType (to UserInfo) 228

Diagram 96: UserPermissionType (to Permission) 229

Diagram 97: HTDResponseOrderData 242

Diagram 98: HEVRequest / HEVResponse 246

Diagram 99: Definition of the XML schema type DataEncryptionInfoType 266

Diagram 100: OrderSignatureData – structured electronic signature 292

	1 Overview and objectives of EBICS
	1.1 Objective of the cooperation
	1.2 General objectives of EBICS

	2 Definitions
	2.1 Terms
	2.2 Notation
	2.2.1 XML
	2.2.1.1 XML schema
	2.2.1.2 XML documents

	2.2.2 Flow diagrams
	2.2.3 Other notation

	2.3 Data types

	3 Design decisions
	3.1 OSI model from EBICS perspective
	3.1.1 TCP/IP as package-orientated transmission layer
	3.1.2 TLS as transport encryption
	3.1.2.1 Pre-distribution and verification of the trust anchors
	3.1.2.2 Server authentication

	3.1.3 HTTP(S) as a technical basic protocol
	3.1.4 XML as an application protocol language

	3.2 Compression, encryption and coding of the order data
	3.3 Segmentation of the order data
	3.4 Recovering the transmission of order data (recovery) [optional]
	3.5 Electronic signature (ES) of the order data
	3.5.1 Subscriber’s ES
	3.5.2 Financial institution’s ES [planned]
	3.5.3 Representation of the ES’s in EBICS messages

	3.6 Preliminary verification [optional]
	3.7 Technical subscribers
	3.8 Identification and authentication signature
	3.9 X.509 data
	3.10 Supported administrative order types
	3.11 Order parameters
	3.12 Flow of the EBICS transactions
	3.13 Interpretation of BTF element combinations by the bank server
	3.14 Interpretation of ES /EDS flag combinations by the bank server

	4 Key management
	4.1 Overview of the keys used
	4.2 Representation of the public keys
	4.3 Actions within key management
	4.4 Initialisation
	4.4.1 Subscriber initialisation
	4.4.1.1 General description
	4.4.1.2 Initialisation via INI and HIA
	4.4.1.2.1 INI
	4.4.1.2.2 HIA
	4.4.1.2.3 Initialisation letters
	4.4.1.2.4 Activation of the subscriber by the financial institution
	4.4.1.2.5 Description of the EBICS messages
	4.4.1.2.5.1 Format of the order data
	4.4.1.2.5.2 Description and example messages

	4.4.1.3 Initialisation via H3K

	4.4.2 Download of the financial institution’s public keys
	4.4.2.1 General description
	4.4.2.2 Description of the EBICS messages
	4.4.2.2.1 Format of the order data
	4.4.2.2.2 Description and example messages

	4.5 Suspending a subscriber
	4.5.1 Alternatives
	4.5.2 Revoking a subscriber via SPR

	4.6 Key changes
	4.6.1 Changing the subscriber keys
	4.6.1.1 General description
	4.6.1.2 Format of the order data

	4.6.2 Changing the bank keys

	4.7 Change-over to longer key lengths
	4.8 Summary

	5 EBICS transactions
	5.1 General provisions
	5.1.1 EBICS transactions
	5.1.2 Transaction phases and transaction steps
	5.1.3 Processing of orders
	5.1.3.1 Chronological dependencies between transmission and processing of upload orders
	5.1.3.2 Chronological dependencies between transmission and processing of download orders

	5.1.4 Transaction administration

	5.2 Assignment of EBICS request to EBICS transaction
	5.3 Preliminary verification of orders [optional]
	5.4 Recovery of transactions [optional]
	5.5 Upload transactions
	5.5.1 Sequence of upload transactions
	5.5.1.1 Description of the EBICS messages
	5.5.1.1.1 EBICS messages in transaction initialisation
	5.5.1.1.2 EBICS messages in the phase data transfer of a order data segment
	5.5.1.1.3 Upload Request Structure for Business Transaction Formats (BTF)

	5.5.1.2 Processing of EBICS messages
	5.5.1.2.1 Processing in the initialisation phase
	5.5.1.2.2 Processing in the data transfer phase

	5.5.2 Recovery of upload transactions

	5.6 Download transactions
	5.6.1 Sequence of download transactions
	5.6.1.1 Description of EBICS messages
	5.6.1.1.1 EBICS messages in transaction initialisation
	5.6.1.1.2 EBICS messages in the data transfer phase
	5.6.1.1.3 EBICS- messages in the acknowledgement phase
	5.6.1.1.4 Download Request Structure for Business Transaction Formats (BTF)

	5.6.1.2 Processing the EBICS messages
	5.6.1.2.1 Processing in the initialisation phase
	5.6.1.2.2 Processing in the data transfer phase
	5.6.1.2.3 Processing in the acknowledgement phase

	5.6.2 Recovery of download transactions

	6 Encryption
	6.1 Encryption at TLS level
	6.2 Encryption at application level

	7 Segmentation of the order data
	7.1 Process description
	7.2 Implementation in the EBICS messages

	8 Electronic Distributed Signature (EDS)
	8.1 Process description
	8.2 Technical implementation of the EDS
	8.3 Detailed description of the administrative EDS order types
	8.3.1 HVU (download EDS overview) and HVZ (Download EDS overview with additional information)
	8.3.1.1 HVU request
	8.3.1.1.1 XML schema (graphical representation)
	8.3.1.1.2 XML schema (textual representation)
	8.3.1.1.3 Meaning of the XML elements/attributes
	8.3.1.1.4 Example XML (abridged)

	8.3.1.2 HVU response
	8.3.1.2.1 XML schema (graphic representation)
	8.3.1.2.2 XML schema (textual representation)
	8.3.1.2.3 Meaning of the XML elements/attributes
	8.3.1.2.4 Example XML

	8.3.1.3 HVZ request
	8.3.1.3.1 XML schema (graphical representation)
	8.3.1.3.2 XML schema (textual representation)
	8.3.1.3.3 Meaning of the XML elements/attributes
	8.3.1.3.4 Example XML (abridged)

	8.3.1.4 HVZ response
	8.3.1.4.1 XML-Schema (graphic representation)
	8.3.1.4.2 XML schema (textual representation)
	8.3.1.4.3 Meaning of the XML elements/attributes
	8.3.1.4.4 Example XML

	8.3.2 HVD (retrieve EDS state)
	8.3.2.1 HVD request
	8.3.2.1.1 XML schema (graphical representation)
	8.3.2.1.2 XML schema (textual representation)
	8.3.2.1.3 Meaning of the XML elements/attributes
	8.3.2.1.4 Example XML (abridged)

	8.3.2.2 HVD response
	8.3.2.2.1 XML schema (graphical representation)
	8.3.2.2.2 XML schema (textual representation)
	8.3.2.2.3 Meaning of the XML elements/attributes
	8.3.2.2.4 Example XML

	8.3.3 HVT (retrieve EDS transaction details)
	8.3.3.1 HVT request
	8.3.3.1.1 XML schema (graphical representation)
	8.3.3.1.2 XML schema (textual representation)
	8.3.3.1.3 Meaning of the XML elements/attributes
	8.3.3.1.4 Example XML (abridged)

	8.3.3.2 HVT response
	8.3.3.2.1 XML schema (graphical representation)
	8.3.3.2.2 XML schema (textual representation)
	8.3.3.2.3 Meaning of the XML elements/attributes
	8.3.3.2.4 Example XML

	8.3.4 HVE (add electronic signature)
	8.3.4.1 HVE request
	8.3.4.1.1 XML schema (graphical representation)
	8.3.4.1.2 XML schema (textual representation)
	8.3.4.1.3 Meaning of the XML elements/attributes
	8.3.4.1.4 Example XML (abridged)

	8.3.4.2 HVE response

	8.3.5 HVS (Cancellation of orders in the EDS)
	8.3.5.1 HVS request
	8.3.5.1.1 XML schema (graphic representation)
	8.3.5.1.2 XML schema (textual representation)
	8.3.5.1.3 Meaning of the XML elements/attributes
	8.3.5.1.4 Example XML (abridged)

	8.3.5.2 HVS response

	8.3.6 Used Service Structures (restricted and not restricted)

	9 “Other” administrative EBICS order types
	9.1 HAA (download retrievable business transaction formats BTF)
	9.1.1 HAA request
	9.1.2 HAA response
	9.1.2.1.1 XML schema (graphic representation)
	9.1.2.1.2 XML schema (textual representation)
	9.1.2.1.3 Meaning of the XML elements/attributes

	9.2 HPD (download bank parameters)
	9.2.1 HPD request
	9.2.2 HPD response
	9.2.2.1.1 XML schema (graphic representation)
	9.2.2.1.2 XML schema (textual representation)
	9.2.2.1.3 Meaning of the XML elements/attributes
	9.2.2.1.4 Example XML

	9.3 HKD (retrieve customer’s customer and subscriber information)
	9.3.1 HKD request
	9.3.2 HKD response
	9.3.2.1.1 XML schema (graphic representation)
	9.3.2.1.2 XML schema (textual representation)
	9.3.2.1.3 Meaning of the XML elements/attributes
	9.3.2.1.4 Example XML

	9.4 HTD (retrieve subscriber’s customer and subscriber information)
	9.4.1 HTD request
	9.4.2 HTD response
	9.4.2.1.1 XML schema (graphic representation)
	9.4.2.1.2 XML schema (textual representation)
	9.4.2.1.3 Meaning of the XML elements/attributes
	9.4.2.1.4 Example XML

	9.5 HEV (Download of supported EBICS versions)
	9.5.1 HEV request
	9.5.2 HEV response
	9.5.3 Schema for HEV request / HEV response
	9.5.3.1 Meaning of the XML elements and XML attributes of the HEV response
	9.5.3.2 Example XML for the HEV response

	10 EBICS Customer acknowledgement (HAC)
	10.1 Preliminary Notes
	10.2 Allocation of pain.002 for HAC
	10.2.1 Allocation of the element group Group Header
	10.2.2 Allocation of the element group Original Group Information and Status
	10.2.3 Allocation of the element group Original Payment Information and Status
	10.2.3.1 Type of action
	10.2.3.2 Result of action
	10.2.3.3 Display file (Use in Germany)
	10.2.3.3.1 Example for DTAUS (domestic German format)
	10.2.3.3.2 Example for SEPA
	10.2.3.3.3 Example for SEPA container
	10.2.3.3.4 Example for DTAZV (German format used for international payments)

	10.3 Annex for HAC: External reason codes (result of action)
	10.4 Annex for HAC: Type/result of action (permitted pairs)

	11 Appendix: Cryptographic processes
	11.1 Identification and authentication signature
	11.1.1 Process
	11.1.2 Format

	11.2 Electronic signatures
	11.2.1 Process
	11.2.2 Format
	11.2.3 EBICS authorisation schemata for signature classes

	11.3 Encryption
	11.3.1 Encryption at TLS level
	11.3.1.1 Process

	11.3.2 Encryption at application level
	11.3.2.1 Process
	11.3.2.2 Formats

	11.4 Replay avoidance via Nonce and Timestamp
	11.4.1 Process description
	11.4.2 Actions of the customer system
	11.4.2.1 Generation of “Nonce” and “Timestamp”
	11.4.2.2 Behaviour in the event of error response EBICS_TX_MESSAGE_REPLAY

	11.4.3 Actions of the bank system
	11.4.3.1 Verification of “Nonce” and “Timestamp”

	11.5 Initialisation letters
	11.5.1 Initialisation letter for INI (example with version A006 of the ES)
	11.5.2 Initialisation letter for HIA (example)

	11.6 Generation of the transaction IDs

	12 Overview of selected EBICS details
	12.1 Optional EBICS features
	12.1.1 Optional administrative order types
	12.1.2 Optional functionalities in the course of the transaction

	12.2 EBICS bank parameters
	12.3 Security media of bank-technical keys
	12.4 Patterns for subscriber IDs, customer IDs, order IDs, hostIDs

	13 Appendix: Complete List of Administrative Order Type Identifiers
	14 Appendix: Signature process for the electronic signature
	14.1 Version A005/A006 of the electronic signature
	14.1.1 Preliminary remarks and introduction
	14.1.2 RSA
	14.1.3 Standard digital signature algorithm
	14.1.3.1 Standard signing function
	14.1.3.2 Standard recovery function

	14.1.4 Signature Mechanisms A005 and A006
	14.1.4.1 Signature Mechanism A005
	14.1.4.1.1 Digital signature generation
	14.1.4.1.2 Digital signature verification
	14.1.4.1.3 Notation

	14.1.4.2 Signature mechanism A006
	14.1.4.2.1 Mask generation function MGF1
	14.1.4.2.2 Digital signature generation according to EMSA-PSS
	14.1.4.2.3 Digital signatur verification according to EMSA-PSS
	14.1.4.2.4 Notation for EMSA-PSS
	14.1.4.2.5 Digital signature generation according to A006
	14.1.4.2.6 Digital signature verification according to A006
	14.1.4.2.7 Notation for A006

	14.1.5 References
	14.1.6 XML structure of signature versions A005/A006

	15 Appendix: Standards and references
	16 Appendix: Glossary
	17 Table of diagrams

